Article

Integer programming approach to production scheduling for make-to-order manufacturing

AGH University of Science and Technology, Faculty of Management Department of Computer Integrated Manufacturing Al.Mickiewicza 30, 30-059 Krakow, Poland
Mathematical and Computer Modelling (Impact Factor: 1.42). 01/2005; DOI: 10.1016/j.mcm.2003.10.053
Source: DBLP

ABSTRACT This paper presents an integer programming approach to production scheduling in make-to-order environment with various due date related performance measures. The proposed formulations incorporate capacity constraints for a hybrid flowshop with multicapacity machines and with batch processing mode. Scheduling of divisible versus indivisible orders are considered. For the proposed integer programming formulations new cutting constraints are identified. Numerical examples modeled after real-world make-to-order assembly system are provided and some computational results with the proposed approach are reported.

0 Bookmarks
 · 
52 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: An improved differential evolution algorithm (IDE) is proposed to solve task assignment problem. The IDE is an improved version of differential evolution algorithm (DE), and it modifies two important parameters of DE algorithm: scale factor and crossover rate. Specially, scale factor is adaptively adjusted According to the objective function values of all candidate solutions, and crossover rate is dynamically adjusted with the increasement of iterations. The adaptive scale factor and dynamical crossover rate are combined to increase the diversity of candidate solutions, and to enhance the exploration capacity of solution space of the proposed algorithm. In addition, a usual penalty function method is adopted to trade-off the objective and the constraints. Experimental results demonstrate that the optimal solutions obtained by the IDE algorithm are all better than those obtained by the other two DE algorithms on solving some task assignment problems.
    Eng. Appl. of AI. 01/2011; 24:616-624.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a one-of-a-kind production (OKP) company, the operation routing and processing time of an order are usually different from the others due to high customisation. As a result, an OKP company needs to dynamically adjust the production resources to keep the production lines reconfigurable. Through a proper assignment of operators in different sections of a production line, bottlenecks and operator re-allocation during production can be reduced effectively. In this paper, a mathematical model is introduced for optimal operator allocation planning on a reconfigurable production line in OKP. The optimisation objectives are to minimise the total number of the operators, total job earliness and tardiness, and the average work-in-process storage. A branch-and-bound algorithm with efficient pruning strategies is developed to solve this problem. The proposed model and the algorithm are empirically validated by using the data of a windows and doors manufacturing company. A software system based on the proposed approach has been implemented in the company.
    International Journal of Production Research 01/2011; 49(3):689-705. · 1.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One-of-a-Kind-Production (OKP) is a non-repetitive manufacturing mode that produces customised products with unique components. Due to the varying production requirements and inadequate operation experience, the unique components and related operations often causes great dynamics in the workshop execution process. Since most of the OKP companies currently adopt paper-based manual data transaction and report mechanism in workshop production process, such dynamics are hard to be timely detected and controlled, resulting in serious order delays and work-in-progress redundancies. Radio frequency identification (RFID) enables automatic and accurate object data capturing capability, and thus makes the real-time visibility and controllability possible to workshop execution process if combined with manufacturing execution system (MES). This article presents an easy-to-deploy and simple-to-use RFID-enabled MES to achieve such real-time control for typical OKP workshops. A real-life case study in a mold and die manufacturing company is presented to demonstrate how technical, social and organisational issues have been addressed in such project. A set of enabling technologies and systems that are key to the development of such RFID-enabled MES are introduced, including hardware like machine data terminal and workshop base station as well as software like scheduling and communication programmes. It is hoped that insights and lessons gained could be generalised for future efforts across small-and-medium-sized OKP manufacturers that share similar requirements.
    Int. J. Computer Integrated Manufacturing. 01/2012; 25:20-34.

Full-text (2 Sources)

View
14 Downloads
Available from
May 17, 2014