Gender-selective toxicity of thimerosal

Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, 67 College St., Toronto, Ontario, Canada M5G 2M1
Experimental and toxicologic pathology: official journal of the Gesellschaft fur Toxikologische Pathologie (Impact Factor: 1.86). 03/2009; 61(2):133-136. DOI: 10.1016/j.etp.2008.07.002


A recent report shows a correlation of the historical use of thimerosal in therapeutic immunizations with the subsequent development of autism; however, this association remains controversial. Autism occurs approximately four times more frequently in males compared to females; thus, studies of thimerosal toxicity should take into consideration gender-selective effects. The present study was originally undertaken to determine the maximum tolerated dose (MTD) of thimersosal in male and female CD1 mice. However, during the limited MTD studies, it became apparent that thimerosal has a differential MTD that depends on whether the mouse is male or female. At doses of 38.4–76.8 mg/kg using 10% DMSO as diluent, seven of seven male mice compared to zero of seven female mice tested succumbed to thimerosal. Although the thimerosal levels used were very high, as we were originally only trying to determine MTD, it was completely unexpected to observe a difference of the MTD between male and female mice. Thus, our studies, although not directly addressing the controversy surrounding thimerosal and autism, and still preliminary due to small numbers of mice examined, provide, nevertheless, the first report of gender-selective toxicity of thimerosal and indicate that any future studies of thimerosal toxicity should take into consideration gender-specific differences.

Download full-text


Available from: Donald R Branch, Sep 23, 2014
  • Source
    • "( 1973 ) observed no marked difference in Hg distribution when administering either thimerosal or etHg . With reference to gender and strain of mice , Branch ( 2009 ) and Ekstrand et al . ( 2010 ) reported male mice were more susceptible to thimerosal toxicity than females . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mercury (Hg) is a hazardous chemical that accumulates in many cells and tissues, thereby producing toxicity. The kidney is a key target organ for Hg accumulation and toxicity. The contributing factors to Hg accumulation in humans include: (1) elemental and inorganic Hg exposure, often occurring by inhalation of Hg vapors; (2) exposure to methyl Hg (meHg), for example, through contaminated seafood; and (3) exposure to ethyl mercury (etHg) via thimerosal-containing vaccines. Systematic investigations on the toxic effects of etHg/thimerosal on the nervous system were carried out, and etHg/thimerosal emerged as a possible risk factor for autism and other neurodevelopmental disorders. There is, however, little known about the mechanisms and molecular interactions underlying toxicity of etHg/thimerosal in the kidney, which is the focus of the current review. Susceptible populations such as infants, pregnant women, and the elderly are exposed to etHg through thimerosal-containing vaccines, and in-depth study of the potential adverse effects on the kidney is needed. In general, toxicity occurring in association with different forms of Hg is related to: intracellular thiol metabolism and oxidative stress reactions; mitochondrial function; intracellular distribution and build-up of calcium; apoptosis; expression of stress proteins; and also interaction with the cytoskeleton. Available evidence for the etHg-induced toxicity in the kidney was examined, and the main mechanisms and molecular interactions of cytotoxicity of etHg/thimerosal exposure in kidney described. Such accumulating knowledge may help to indicate molecular pathways that, if modulated, may better handle Hg-mediated toxicity.
    Toxicological and Environmental Chemistry 09/2013; 95(8):1424. DOI:10.1080/02772248.2013.877246 · 0.83 Impact Factor
    • "The aim of this study was to find the MTD value for acute exposure of TQ and address the possible mechanism of TQ toxicity using IP and oral routes. In preclinical and clinical toxicology, the gender issue is becoming an important investigation aspect[89], therefore, the effect of gender on TQ toxicity will be an investigation point in our study. Anatomical and biochemical analysis were implemented to achieve the aim set for our study. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The maximum tolerated dose for intraperitoneal injection and oral ingestion of thymoquinone was determined in male and female Wistar rats. A range of dose levels of thymoquinone: 20, 30 and 40 mg/kg body weight for intraperitoneal injection and 200, 300 and 500 mg/kg body weight for oral ingestion were tested for acute toxicity in rats. The results showed that the maximum tolerated dose for intraperitoneal injection was 22.5 mg/kg in male rats and 15 mg/kg in females, whereas for oral ingestion it was 250 mg/kg in both male and female rats. There were different signs of toxicity shown in rats which received intraperitoneal injection from those that received oral ingestion of thymoquinone. Rats which received intraperitoneal injection of thymoquinone showed toxicity signs which were related to acute pancreatitis. Meanwhile, rats which received oral ingestion of thymoquinone showed transient toxicity signs. Two deaths were reported at dose of 500 mg/kg as a result of bowel obstruction complications. The data presented in this study indicate that the route of administration of thymoquinone could have an influence on thymoquinone toxicity outcome in both genders.
    Indian Journal of Pharmaceutical Sciences 05/2012; 74(3):195-200. DOI:10.4103/0250-474X.106060 · 0.48 Impact Factor
  • Source
    • "This is an interesting phenomenon in relation to the toxicology of Hg. Studies in rats showed male rats to be significantly more susceptible to the adverse effects of inorganic Hg (Ekstrand et al. 2010) and also, more recently, to thimerosal (Branch 2009). The mechanisms underlying this gender disparity seem to be linked to differences in testosterone and estrogen levels, as testosterone was found to increase the toxicity of Hg, while estrogen was reported to be protective against Hg damage (Muraoka and Itoh 1980). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism is defined by a behavioral set of stereotypic and repetitious behavioral patterns in combination with social and communication deficits. There is emerging evidence supporting the hypothesis that autism may result from a combination of genetic susceptibility and exposure to environmental toxins at critical moments in development. Mercury (Hg) is recognized as a ubiquitous environmental neurotoxin and there is mounting evidence linking it to neurodevelopmental disorders, including autism. Of course, the evidence is not derived from experimental trials with humans but rather from methods focusing on biomarkers of Hg damage, measurements of Hg exposure, epidemiological data, and animal studies. For ethical reasons, controlled Hg exposure in humans will never be conducted. Therefore, to properly evaluate the Hg-autism etiological hypothesis, it is essential to first establish the biological plausibility of the hypothesis. This review examines the plausibility of Hg as the primary etiological agent driving the cellular mechanisms by which Hg-induced neurotoxicity may result in the physiological attributes of autism. Key areas of focus include: (1) route and cellular mechanisms of Hg exposure in autism; (2) current research and examples of possible genetic variables that are linked to both Hg sensitivity and autism; (3) the role Hg may play as an environmental toxin fueling the oxidative stress found in autism; (4) role of mitochondrial dysfunction; and (5) possible role of Hg in abnormal neuroexcitory and excitotoxity that may play a role in the immune dysregulation found in autism. Future research directions that would assist in addressing the gaps in our knowledge are proposed.
    Toxicological and environmental chemistry 07/2011; 93(5-6):1251-1273. DOI:10.1080/02772248.2011.580588 · 0.83 Impact Factor
Show more