Re-evaluating the role of the mammillary bodies in memory

School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
Neuropsychologia (Impact Factor: 3.48). 01/2010; DOI: 10.1016/j.neuropsychologia.2009.10.019
Source: PubMed

ABSTRACT Although the mammillary bodies were among the first brain regions to be implicated in amnesia, the functional importance of this structure for memory has been questioned over the intervening years. Recent patient studies have, however, re-established the mammillary bodies, and their projections to the anterior thalamus via the mammillothalamic tract, as being crucial for recollective memory. Complementary animal research has also made substantial advances in recent years by determining the electrophysiological, neurochemical, anatomical and functional properties of the mammillary bodies. Mammillary body and mammillothalamic tract lesions in rats impair performance on a number of spatial memory tasks and these deficits are consistent with impoverished spatial encoding. The mammillary bodies have traditionally been considered a hippocampal relay which is consistent with the equivalent deficits seen following lesions of the mammillary bodies or their major efferents, the mammillothalamic tract. However, recent findings suggest that the mammillary bodies may have a role in memory that is independent of their hippocampal formation afferents; instead, the ventral tegmental nucleus of Gudden could be providing critical mammillary body inputs needed to support mnemonic processes. Finally, it is now apparent that the medial and lateral mammillary nuclei should be considered separately and initial research indicates that the medial mammillary nucleus is predominantly responsible for the spatial memory deficits following mammillary body lesions in rats.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex differences in episodic and spatial memory are frequently observed, suggesting there may be sex-related structural differences in the hippocampus (HC). Earlier findings are inconsistent, possibly due to known variability along the hippocampal longitudinal axis. Here, we assessed potential sex differences in hippocampal volume and structural covariance with the rest of the brain in young men and women (N=76), considering the anterior (aHC) and posterior (pHC) hippocampus separately. Women exhibited a larger pHC than men adjusted for brain size. Using partial least squares, we identified two significant patterns of structural covariance of aHC and pHC. The first included brain areas that covaried positively and negatively in volume with both aHC and pHC in men, but showed greater covariance with aHC than pHC in women. The second pattern revealed distinct structural covariance of aHC and pHC that showed a clear difference between men and women: in men pHC showed reliable structural covariance with the medial and lateral parietal lobes and the prefrontal cortex, whereas in women aHC showed reliable structural covariance with the anterior temporal lobe bilaterally. This pattern converges with resting state functional connectivity of aHC and pHC and suggests that these hippocampal sections interact with different brain regions, consistent with a division of labor with regards to episodic and spatial memory. Our findings lend support to a division of the HC into an anterior and posterior part and identify sex as a potential moderating factor when investigating hippocampal structure and connectivity.
    NeuroImage 05/2014; · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns.
    Frontiers in Neural Circuits 05/2014; 8(52). · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although anterograde amnesia can occur after damage in various brain sites, hippocampal dysfunction is usually seen as the ultimate cause of the failure to learn new episodic information. This assumption is supported by anatomical evidence showing direct hippocampal connections with all other sites implicated in causing anterograde amnesia. Likewise, behavioural and clinical evidence would seem to strengthen the established notion of an episodic memory system emanating from the hippocampus. There is, however, growing evidence that key, interconnected sites may also regulate the hippocampus, reflecting a more balanced, integrated network that enables learning. Recent behavioural evidence strongly suggests that medial diencephalic structures have some mnemonic functions independent of the hippocampus, which can then act upon the hippocampus. Anatomical findings now reveal that nucleus reuniens and the retrosplenial cortex provide parallel, disynaptic routes for prefrontal control of hippocampal activity. There is also growing clinical evidence that retrosplenial cortex dysfunctions contribute to both anterograde amnesia and the earliest stages of Alzheimer's disease, revealing the potential significance of this area for clinical studies. This array of findings underlines the importance of redressing the balance and the value of looking beyond the hippocampus when seeking to explain failures in learning new episodic information.
    Proceedings of the Royal Society B: Biological Sciences 07/2014; 281(1786). · 5.68 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014