Article

Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California

Ecosystem Science Division, Department of Environmental Science, Policy and Management, 151 Hilgard Hall, University of California at Berkeley, Berkeley, CA 94720, USA
Agricultural and Forest Meteorology 01/2004; DOI: 10.1016/j.agrformet.2003.10.004

ABSTRACT Understanding how environmental variables affect the processes that regulate the carbon flux over grassland is critical for large-scale modeling research, since grasslands comprise almost one-third of the earth’s natural vegetation. To address this issue, fluxes of CO2 (Fc, flux toward the surface is negative) were measured over a Mediterranean, annual grassland in California, USA for 2 years with the eddy covariance method.To interpret the biotic and abiotic factors that modulate Fc over the course of a year we decomposed net ecosystem CO2 exchange into its constituent components, ecosystem respiration (Reco) and gross primary production (GPP). Daytime Reco was extrapolated from the relationship between temperature and nighttime Fc under high turbulent conditions. Then, GPP was estimated by subtracting daytime values of Fc from daytime estimates of Reco.Results show that most of carbon exchange, both photosynthesis and respiration, was limited to the wet season (typically from October to mid-May). Seasonal variations in GPP followed closely to changes in leaf area index, which in turn was governed by soil moisture, available sunlight and the timing of the last frost. In general, Reco was an exponential function of soil temperature, but with season-dependent values of Q10. The temperature-dependent respiration model failed immediately after rain events, when large pulses of Reco were observed. Respiration pulses were especially notable during the dry season when the grass was dead and were the consequence of quickly stimulated microbial activity.Integrated values of GPP, Reco, and net ecosystem exchange (NEE) were 867, 735, and −132 g C m−2, respectively, for the 2000–2001 season, and 729, 758, and 29 g C m−2 for the 2001–2002 season. Thus, the grassland was a moderate carbon sink during the first season and a weak carbon source during the second season. In contrast to a well-accepted view that annual production of grass is linearly correlated to precipitation, the large difference in GPP between the two seasons were not caused by the annual precipitation. Instead, a shorter growing season, due to late start of the rainy season, was mainly responsible for the lower GPP in the second season. Furthermore, relatively higher Reco during the non-growing season occurred after a late spring rain. Thus, for this Mediterranean grassland, the timing of rain events had more impact than the total amount of precipitation on ecosystem GPP and NEE. This is because its growing season is in the cool and wet season when carbon uptake and respiration are usually limited by low temperature and sometimes frost, not by soil moisture.

1 Bookmark
 · 
169 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We calculated the contribution of advection to the C budget measured by the eddy covariance (EC) technique for a steep and forested mountain site (CarboEurope site CH-Lae, Laegeren, Switzerland) during the growing season 2007 (May to August). Thereby we followed two approaches: (1) the physical correction of the EC data for directly measured advection terms and (2) the u∗ filter approach that replaces periods with u∗ below a site-specific threshold with empirically modelled fluxes. We found good agreement between the two approaches in terms of daily (linear regression slope: 0.77±0.04, intercept: 1.23±0.27 μmol m−2 s−1, adj. R2=0.80) and seasonal sums of gross fluxes (difference ≤12%), when using a u∗ threshold of 0.3 m s−1 and correcting EC for horizontal advection only. Incorporating also vertical advection into the mass balance equation resulted in unrealistic and highly erratic fluxes. However, on a daily basis vertical advection cancelled out to nearly zero. The u∗ filter seems to account primarily for respiration fluxes, which are mainly affected by horizontal advection. We could confirm our corrections by a cross-validation with independent approaches, such as soil respiration chamber measurements, light curves and energy budget closure. Our results show that flux measurements on steep sites with complex topography are possible. Actually, sloping sites seem to have the advantage over flat sites that advection measurements can be reduced to a simplified two-dimensional measurement approach due to the two-dimensional characteristics of the wind field at those sites.
    Biogeosciences 01/2010; · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167–183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439). Maximum values of the quantum yield (α  =  75 mmol · mol−1), photosynthetic capacity (Amax  =  3.4 mg CO2 · m−2 · s−1), gross photosynthesis (Pg,max  =  116 g CO2 · m−2 · d−1), and ecological light-use efficiency (ϵecol  =  59 mmol · mol−1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8 600 g CO2 · m−2 · yr−1), total ecosystem respiration (7 900 g CO2 · m−2 · yr−1), and net CO2 exchange (2 400 g CO2 · m−2 · yr−1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2 · m−2 · yr−1 for intensive grasslands and 933 g CO2 · m−2 · d−1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stock.
    Rangeland Ecology & Management 01/2010; 63. · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Agricultural and Forest Meteorology j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a g r f o r m e t Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow a b s t r a c t Seven years of continuous eddy covariance measurements at an alpine meadow were used to investigate the impacts of climate drivers and ecosystem responses on the inter-annual variability (IAV) of the net ecosystem exchange (NEE). The annual cumulative value of NEE was positive (source) in 2003, 2005 and 2009 (50, 15 and 112 g m −2 respectively) and negative (sink) in 2004, 2006, 2007 and 2008 (29, 75, 110 and 28 g m −2 respectively). The IAV of carbon dioxide fluxes builds up in two phenological phases: the onset of the growing season (triggered by snow melting) and the canopy re-growth after mowing. Respi-ratory fluxes during the non-growing season were observed to increase IAV, while growing season uptake dampened it. A novel approach was applied to factor out the two main sources of IAV: climate drivers' variability and changes in the ecosystem responses to climate. Annual values of carbon dioxide fluxes were calculated assuming (a) variable climate and variable ecosystem response among years, (b) variable climate and constant ecosystem response and (c) constant climate and variable ecosystem response. The analysis of flux variances calculated under these three assumptions indicates the occurrence of an impor-tant negative feedback between climate and ecosystem responses. Due to this feedback, the observed IAV of NEE is lower than one would expect for a given climate variability, because of the counteracting changes in ecosystem responses. This alpine meadow therefore demonstrates the ability to acclimatise and to limit the IAV of carbon fluxes induced by climate variability.
    Agricultural and Forest Meteorology 01/2011; 151:1233-1243. · 3.89 Impact Factor

Full-text (2 Sources)

View
174 Downloads
Available from
May 30, 2014