Article

Brain preparation before a voluntary action: Evidence against unconscious movement initiation

Dunedin School of Medicine, University of Otago, New Zealand; Department of Psychology, University of Otago, New Zealand
Consciousness and Cognition (Impact Factor: 2.31). 01/2010; DOI: 10.1016/j.concog.2009.08.006

ABSTRACT Benjamin Libet has argued that electrophysiological signs of cortical movement preparation are present before people report having made a conscious decision to move, and that these signs constitute evidence that voluntary movements are initiated unconsciously. This controversial conclusion depends critically on the assumption that the electrophysiological signs recorded by Libet, Gleason, Wright, and Pearl (1983) are associated only with preparation for movement. We tested that assumption by comparing the electrophysiological signs before a decision to move with signs present before a decision not to move. There was no evidence of stronger electrophysiological signs before a decision to move than before a decision not to move, so these signs clearly are not specific to movement preparation. We conclude that Libet’s results do not provide evidence that voluntary movements are initiated unconsciously.

11 Bookmarks
 · 
888 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypnosis often leads people to obey a suggestion of movement and to lose perceived voluntariness. This inexplicable phenomenon suggests that the state of the motor system may be altered by hypnosis; however, objective evidence for this is still lacking. Thus, we used transcranial magnetic stimulation of the primary motor cortex (M1) to investigate how hypnosis, and a concurrent suggestion that increased motivation for a force exertion task, influenced the state of the motor system. As a result, corticospinal excitability was enhanced, producing increased force exertion, only when the task-motivating suggestion was provided during hypnotic induction, showing that the hypnotic suggestion actually altered the state of M1 and the resultant behavior.
    Neuroscience research. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: download fulltext : http://dx.plos.org/10.1371/journal.pone.0083845 The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor execution.
    PLoS ONE 12/2013; 8(12):e83845. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Belief in free will has been a mainstay in philosophy throughout history, grounded in large part in our intuitive sense that we consciously control our actions and could have done otherwise. However, psychology and psychiatry have long sought to uncover mechanistic explanations for human behavior that challenge the notion of free will. In recent years, neuroscientific discoveries have produced a model of volitional behavior that is at odds with the notion of contra-causal free will and our sense of conscious agency. Volitional behavior instead appears to have antecedents in unconscious brain activity that is localizable to specific neuroanatomical structures. Updating notions of free will in favor of a continuous model of volitional self-control provides a useful paradigm to conceptualize and study some forms of psychopathology such as addiction and impulse control disorders. Similarly, thinking of specific symptoms of schizophrenia as disorders of agency may help to elucidate mechanisms of psychosis. Beyond clinical understanding and etiological research, a neuroscientific model of volitional behavior has the potential to modernize forensic notions of responsibility and criminal punishment in order to inform public policy. Ultimately, moving away from the language of free will towards the language of volitional control may result in an enhanced understanding of the very nature of ourselves.
    Psychological Medicine 12/2013; · 5.43 Impact Factor