Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)

Department of Biology and Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, CB #3280, 408 Fordham Hall, Chapel Hill, NC 27599-3280, USA
Methods (Impact Factor: 3.22). 07/2009; DOI: 10.1016/j.ymeth.2009.03.003

ABSTRACT The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol–chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression is regulated through the activity of transcription factors (TFs) and chromatin-modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods have led to an explosion of both computational and empirical methods for CRM discovery in model and nonmodel organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against TFs or histone post-translational modifications, identification of nucleosome-depleted 'open' chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted TF-binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. WIREs Dev Biol 2015, 4:59-84. doi: 10.1002/wdev.168 For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 Wiley Periodicals, Inc.
    12/2014; 4(2). DOI:10.1002/wdev.168
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance.
    Nature Communications 04/2015; 6. DOI:10.1038/ncomms7683 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modifications to the global run-on and sequencing (GRO-seq) protocol that enrich for 5'-capped RNAs can be used to reveal active transcriptional regulatory elements (TREs) with high accuracy. Here, we introduce discriminative regulatory-element detection from GRO-seq (dREG), a sensitive machine learning method that uses support vector regression to identify active TREs from GRO-seq data without requiring cap-based enrichment ( This approach allows TREs to be assayed together with gene expression levels and other transcriptional features in a single experiment. Predicted TREs are more enriched for several marks of transcriptional activation-including expression quantitative trait loci, disease-associated polymorphisms, acetylated histone 3 lysine 27 (H3K27ac) and transcription factor binding-than those identified by alternative functional assays. Using dREG, we surveyed TREs in eight human cell types and provide new insights into global patterns of TRE function.
    Nature Methods 03/2015; DOI:10.1038/nmeth.3329 · 25.95 Impact Factor