Article

In vitro model for evaluating drug transport across the blood–brain barrier

Université d'Artois, Arras, Nord-Pas-de-Calais, France
Advanced drug delivery reviews (Impact Factor: 12.71). 05/1999; 36(2-3):165-178. DOI: 10.1016/S0169-409X(98)00083-0
Source: PubMed

ABSTRACT The passage of substances across the blood–brain barrier (BBB) is regulated in the cerebral capillaries, which possess certain distinct different morphological and enzymatic properties compared with the capillaries of other organs. Investigations of the functional characteristics of brain capillaries have been facilitated by the use of cultured brain endothelial cells, but in most studies some characteristics of the in vivo BBB are lost. To provide an in vitro system for studying brain capillary functions, we have developed a process of coculture that closely mimics the in vivo situation by culturing brain capillary endothelial cells on one side of a filter and astrocytes on the other. In order to assess the drug transport across the blood–brain barrier, we compared the extraction ratios in vivo to the permeability of the in vitro model. The in vivo and the in vitro values showed a strong correlation. The relative ease with which such cocultures can be produced in large quantities facilitates the screening of new centrally active drugs. This model provides an easier, reproducible and mass-production method to study the blood–brain barrier in vitro.

0 Followers
 · 
216 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carnitine beta-hydroxy-gamma-(trimethylammonio)butyrate - a compound necessary in the peripheral tissues for a transfer of fatty acids for their oxidation within the cell, accumulates in the brain despite low beta-oxidation in this organ. In order to enter the brain, carnitine has to cross the blood-brain barrier formed by capillary endothelial cells which are in close interaction with astrocytes. Previous studies, demonstrating expression of mRNA coding two carnitine transporters - organic cation/carnitine transporter 2 (OCTN2) and B(0,+) in endothelial cells, did not give any information on carnitine transporters polarity in endothelium. Therefore more detailed experiments were performed on expression and localization of a high affinity carnitine transporter OCTN2 in an in vitro model of the blood-brain barrier by real-time PCR, western blot analysis, and immunocytochemistry. The amount of mRNA was comparable in endothelial cells and kidney, when referred to house-keeping genes, it was, however, significantly lower in astrocytes. Polarity of OCTN2 localization was further studied in an in vitro model of the blood-brain barrier with use of anti-OCTN2 antibodies. Z-axis analysis of the confocal microscope pictures of endothelial cells, with anti-P-glycoprotein antibodies as the marker of apical membrane, showed OCTN2 localization at the basolateral membrane and in the cytoplasmic region in the vicinity of nuclei. Localization of OCTN2 suggest that carnitine can be also transported from the brain, playing an important role in removal of certain acyl esters.
    Journal of Neurochemistry 02/2008; 104(1):113-23. DOI:10.1111/j.1471-4159.2007.05024.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The co-culture of bovine brain capillary endothelial cells and rat primary glial cells was established as an in vitro blood-brain barrier model to investigate the mechanisms by which the Gram-positive bacterial cell wall components lipoteichoic acid and muramyl dipeptide induced injury of blood-brain barrier structure and function. We found that highly purified lipoteichoic acid disrupted blood-brain barrier integrity in a concentration- and time-dependent manner indirectly, through glia activation. Low trans-endothelial electrical resistance and high permeability to fluorescein isothiocyanate-inulin observed in the presence of lipoteichoic acid-activated glial cells were potentiated by muramyl dipeptide and could be reversed only when glial cells were activated by lipoteichoic acid at 10 microg/ml but not with a higher lipoteichoic acid concentration (30 microg/ml). Immunocytochemistry analysis revealed no evident changes in the distribution of the cytoskeleton protein F-actin and tight junction proteins occludin and claudin after lipoteichoic acid treatment. However, the tight junction associated protein AHNAK clearly revealed the morphological alteration of the endothelial cells induced by lipoteichoic acid. Lipoteichoic acid-activated glial cells produced nitric oxide and pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1beta) that contributed to lipoteichoic acid-induced blood-brain barrier disruption, since the direct treatment of the endothelial monolayer with tumor necrosis factor-alpha or interleukin-1beta increased blood-brain barrier permeability, whereas the pre-treatment of lipoteichoic acid-activated glial cells with antibodies against these two cytokines blocked lipoteichoic acid effects. Additionally, nitric oxide was also involved in blood-brain barrier damage, since the nitric oxide donor itself (diethylenetriamine-nitric oxide adduct) increased blood-brain barrier permeability and inducible nitric oxide synthase inhibitor (1400W) partially reversed lipoteichoic acid-induced trans-endothelial electrical resistance decrease.
    Neuroscience 02/2006; 137(4):1193-209. DOI:10.1016/j.neuroscience.2005.10.011 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The platelet-derived lysophospholipid sphingosine-1-phosphate (S1P) is present in blood plasma and is one of the most potent growth factors displaying proangiogenic activity towards endothelial cells (EC) derived from various tissues. The paracrine regulation of brain angiogenesis by platelet-derived growth factors is, however, poorly understood. In the present study, we assessed the role of S1P on brain EC migration and tubulogenesis, using rat brain-derived (RBE4) EC as an in vitro model. We show that S1P inhibits brain EC migration and tubulogenesis, while it displays proangiogenic activity towards noncerebral EC. Overexpression of the S1P receptor S1P-1 in RBE4 cells potentiated all of the S1P-mediated events. We also show that the lack of expression of MT1-MMP, a membrane-bound matrix metalloproteinase that is thought to cooperate with S1P in tubulogenic processes, may explain the antiangiogenic activity of S1P on brain vasculature. Altogether our results support the hypothesis of a tissue-specific, antiangiogenic role of S1P in the brain, which may help to stabilize the cerebral vasculature and thus have crucial impact on the setting and regulation of normal brain vascularization.
    Journal of Cerebral Blood Flow & Metabolism 10/2005; 25(9):1171-82. DOI:10.1038/sj.jcbfm.9600117 · 5.34 Impact Factor