In vitro model for evaluating drug transport across the blood–brain barrier

Laboratoire de Biochimie Cellulaire et Moléculaire, Faculté de Sciences Jean Perrin, Université d'Artois, 62307 Lens, France; U325 INSERM, Institut Pasteur, 59019 Lille, France; Pharmacokinetics and drug metabolism, Astra Arcus, AB-S-151 85, Södertälje, Sweden
Advanced drug delivery reviews (Impact Factor: 11.96). 05/1999; DOI: 10.1016/S0169-409X(98)00083-0
Source: PubMed

ABSTRACT The passage of substances across the blood–brain barrier (BBB) is regulated in the cerebral capillaries, which possess certain distinct different morphological and enzymatic properties compared with the capillaries of other organs. Investigations of the functional characteristics of brain capillaries have been facilitated by the use of cultured brain endothelial cells, but in most studies some characteristics of the in vivo BBB are lost. To provide an in vitro system for studying brain capillary functions, we have developed a process of coculture that closely mimics the in vivo situation by culturing brain capillary endothelial cells on one side of a filter and astrocytes on the other. In order to assess the drug transport across the blood–brain barrier, we compared the extraction ratios in vivo to the permeability of the in vitro model. The in vivo and the in vitro values showed a strong correlation. The relative ease with which such cocultures can be produced in large quantities facilitates the screening of new centrally active drugs. This model provides an easier, reproducible and mass-production method to study the blood–brain barrier in vitro.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The endothelial cells forming the blood-brain barrier (BBB) are highly specialized to allow precise control over the substances that leave or enter the brain. An elaborate network of complex tight junctions (TJ) between the endothelial cells forms the structural basis of the BBB and restricts the paracellular diffusion of hydrophilic molecules. Additionally, the lack of fenestrae and the extremely low pinocytotic activity of endothelial cells of the BBB inhibit the transcellular passage of molecules across the barrier. On the other hand, in order to meet the high metabolic needs of the tissue of the central nervous system (CNS), specific transport systems selectively expressed in the membranes of brain endothelial cells in capillaries mediate the directed transport of nutrients into the CNS or of toxic metabolites out of the CNS. Whereas the characteristics of the mature BBB endothelium are well described, the cellular and molecular mechanisms that control the development, differentiation and maintenance of the highly specialized endothelial cells of the BBB remain unknown to date, despite the recent explosion in our knowledge of the growth factors and their receptors specifically acting on vascular endothelium during development. This review summarizes our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB.
    Cell and Tissue Research 11/2003; 314(1):119-29. · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies were conducted to evaluate whether the use of an in vitro model of the blood-brain barrier (BBB) resulted in more accurate predictions of the in vivo transport of compounds compared to the use of a human intestinal cell line (Caco-2). The in vitro BBB model employs bovine brain capillary endothelial cells co-cultured with primary rat astrocytes. The Caco-2 cells originate from a human colorectal carcinoma. The rat was used as experimental animal for the in vivo studies. Strong correlations (r = 0.93-0.95) were found between the results generated by the in vitro model of the BBB and two different methodologies to measure the permeability across the BBB in vivo. In contrast, a poor correlation (r = 0.68) was obtained between Caco-2 cell data and in vivo BBB transport. A relatively poor correlation (r = 0.74) was also found between the two in vitro models. The present study illustrates the limitations of the Caco-2 model to predict BBB permeability of compounds in vivo. The results emphasize the fact that the BBB and the intestinal mucosa are two fundamentally different biologic barriers, and to be able to make accurate predictions about the in vivo CNS penetration of potential drug candidates, it is important that the in vitro model possesses the main characteristics of the in vivo BBB.
    Pharmaceutical Research 08/2002; 19(7):976-81. · 4.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Good in vitro blood-brain barrier (BBB) models that mimic the in vivo BBB phenotype are essential for studies on BBB functionality and for initial screening in drug discovery programmes, as many potential therapeutic drug candidates have poor BBB permeation. Difficulties associated with the availability of human brain tissue, coupled with the time and cost associated with using animals for this kind of research have led to the development of non-human cell culture models. However, most BBB models display a low transendothelial electrical resistance (TEER), which is a measure of the tightness of the BBB. To address these issues we have established and optimised a robust, simple to use in vitro BBB model using porcine brain endothelial cells (PBECs). The PBEC model gives high TEER without the need for co-culture with astrocytes (up to 1300Ωcm(2) with a mean TEER of ∼800Ωcm(2)) with well organised tight junctions as shown by immunostaining for occludin and claudin-5. Functional assays confirmed the presence of high levels of alkaline phosphatase (ALP), and presence of the efflux transporter, P-glycoprotein (P-gp, ABCB1). Presence of the breast cancer resistance protein (BCRP, ABCG2) was confirmed by TaqMan real-time RT-PCR assay. Real-time RT-PCR assays for BCRP, occludin and claudin-5 demonstrated no significant differences between batches of PBECs, and also between primary and passage 1 PBECs. A permeability screen of 10 compounds demonstrated the usefulness of the model as a tool for drug permeability studies. Qualitative and quantitative results from this study confirm that this in vitro porcine BBB model is reliable and robust; it is also simpler to generate than most other BBB models. This article is part of a Special Issue entitled Electrical Synapses.
    Brain research 07/2012; · 2.46 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014