Is there such thing as a parasite free lunch? The direct and indirect consequences of eating invasive prey.

Department of Biology, Carleton University, 1125 Colonel By, Ottawa, ON, K1S 5B6, Canada.
EcoHealth (Impact Factor: 2.27). 03/2012; 9(1):6-16. DOI: 10.1007/s10393-012-0757-7
Source: PubMed

ABSTRACT As the number of invasive species increases globally, more and more native predators are reported to shift their diet toward invasive prey. The consequences of such diet shifts for the health of populations of native predators are poorly studied, but diet shifts are expected to have important parasitological and immunological consequences, ultimately affecting predator fitness. We reviewed evidence that diet shifts from native to invasive prey can alter parasite exposure directly and also indirectly affect immune functions via changes in condition and contaminant exposure. We highlight relevant conceptual and methodological tools that should be used for the design of experiments aimed at exploring important links between invasive prey and parasitism, contaminants and fitness of their native predators.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Populations of invasive species tend to have fewer parasites in their introduced ranges than in their native ranges and are also thought to have fewer parasites than native prey. This 'release' from parasites has unstudied implications for native predators feeding on exotic prey. In particular, shifts from native to exotic prey should reduce levels of trophically transmitted parasites. We tested this hypothesis in native populations of pumpkinseed sunfish (Lepomis gibbosus) in Lake Opinicon, where fish stomach contents were studied intensively in the 1970s, prior to the appearance of exotic zebra mussels (Dreissena polymorpha) in the mid-1990s. Zebra mussels were common in stomachs of present-day pumpkinseeds, and stable isotopes of carbon and nitrogen confirmed their importance in long-term diets. Because historical parasite data were not available in Lake Opinicon, we also surveyed stomach contents and parasites in pumpkinseed in both Lake Opinicon and an ecologically similar, neighboring lake where zebra mussels were absent. Stomach contents of pumpkinseed in the companion lake did not differ from those of pre-invasion fish from Lake Opinicon. The companion lake, therefore, served as a surrogate "pre-invasion" reference to assess effects of zebra mussel consumption on parasites in pumpkinseed. Trophically transmitted parasites were less species-rich and abundant in Lake Opinicon, where fish fed on zebra mussels, although factors other than zebra mussel consumption may contribute to these differences. Predation on zebra mussels has clearly contributed to a novel trophic coupling between littoral and pelagic food webs in Lake Opinicon.
    Oecologia 02/2014; · 3.25 Impact Factor


Available from
Jun 1, 2014

Grégory Bulté