Maternal high-fat diet impacts endothelial function in nonhuman primate offspring

1] Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA [2] Cardiovascular Research Laboratory, Starr Academic Center, Providence Heart and Vascular Institute, Portland, OR, USA.
International journal of obesity (2005) (Impact Factor: 5.39). 03/2012; 37(2). DOI: 10.1038/ijo.2012.42
Source: PubMed

ABSTRACT OBJECTIVE:The link between maternal under-nutrition and cardiovascular disease (CVD) in the offspring later in life is well recognized, but the impact of maternal over-nutrition on the offspring's cardiovascular function and subsequent risk for CVD later in life remains unclear. Here, we investigated the impact of maternal exposure to a high-fat/calorie diet (HFD) during pregnancy and early postnatal period on endothelial function of the offspring in a nonhuman primate model.METHODS:Offspring, naturally born to either a control (CTR) diet (14% fat calories) or a HFD (36% fat calories) consumption dam, were breast-fed until weaning at about 8 months of age. After weaning, the offspring were either maintained on the same diet (CTR/CTR, HFD/HFD), or underwent a diet switch (CTR/HFD, HFD/CTR). Blood samples and arterial tissues were collected at necropsy when the animals were about 13 months of age.RESULTS:HFD/HFD juveniles displayed an increased plasma insulin level and glucose-stimulated insulin secretion in comparison with CTR/CTR. In abdominal aorta, but not the renal artery, acetylcholine-induced vasorelaxation was decreased remarkably for HFD/HFD juveniles compared with CTR/CTR. HFD/HFD animals also showed a thicker intima wall and an abnormal vascular-morphology, concurrent with elevated expression levels of several markers related to vascular inflammation and fibrinolytic function. Diet-switching animals (HFD/CTR and CTR/HFD) displayed modest damage on the abdominal vessel.CONCLUSION:Our data indicate that maternal HFD exposure impairs offspring's endothelial function. Both early programming events and postweaning diet contribute to the abnormalities that could be reversed partially by diet intervention.International Journal of Obesity advance online publication, 27 March 2012; doi:10.1038/ijo.2012.42.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The development of long-term vascular disease can be linked to the intrauterine environment, and maternal nutrition during gestation plays a critical role in the future vascular health of offspring. The purpose of this investigation was to test the hypothesis that a high-energy (HE) gestational diet, HE post-weaning diet, or their combination will lead to endothelial dysfunction in offspring.Methods Duroc x Landrace gilts (n¿=¿16) were assigned to either a HE (10,144 Kcal/day, n¿=¿8) or normal energy (NE: 6721 Kcal/day, n¿=¿8) diet throughout pregnancy. Piglets were placed on either a NE or HE diet during the growth phase. At 3 months of age femoral arteries were harvested from offspring (n¿=¿47). Endothelial-dependent and -independent vasorelaxation was measured utilizing wire-myography and increasing concentrations of bradykinin (BK) and sodium nitroprusside (SNP), respectively.ResultsBK and SNP induced vasorelaxation were significantly reduced in the femoral arteries of gestational HE offspring. However, no effect for the post-weaning diet on BK and SNP induced vasorelaxation was seen. This investigation demonstrates that a HE diet prenatally diminishes both BK and SNP induced vasorelaxation in swine.Conclusions These findings suggest that a HE gestational diet can play a critical role in the development of offspring¿s vascular function, predisposing them to endothelial dysfunction. This dysfunction may lead to atherosclerotic disease development later in life.
    BMC Pregnancy and Childbirth 12/2014; 14(1):405. DOI:10.1186/s12884-014-0405-z · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention.
    Physiological Reviews 10/2014; 94(4):1027-1076. DOI:10.1152/physrev.00029.2013 · 29.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maternal high fat intake during pregnancy and lactation can result in obesity and adverse cardio-metabolic status in offspring independent of postnatal diet. While it is clear that maternal high fat intake can cause hypertension in adult offspring, there is little evidence regarding the role of dietary interventions in terms of reversing these adverse effects. Conjugated linoleic acid (CLA) is an omega 6 fatty acid with beneficial effects in obesity and metabolic status. However, the impact of CLA supplementation in the context of pregnancy disorders and high fat diet-induced developmental programming of offspring cardio-metabolic dysfunction has not been investigated. We have utilised a model of maternal overnutrition to examine the effects of CLA supplementation on programmed endothelial dysfunction during adulthood. Female Sprague-Dawley rats were fed either a purified control diet (CON) or purified control diet supplemented with 1% CLA (of total fat), a purified high fat (HF) diet (45%kcal from fat) and a purified HF diet supplemented with 1% CLA (of total fat) (HFCLA). All dams were fed ad libitum throughout pregnancy and lactation. Offspring were fed a standard chow diet from weaning (day 21) until the end of the study (day 150). Systolic blood pressure (SBP) was measured at day 85 and 130 by tail cuff plethysmography. At day 150, offspring mesenteric vessels were mounted on a pressure myograph and vascular responses to agonist-induced constriction and endothelium-dependent vasodilators were investigated. SBP was increased at day 85 and 130 in HF and HFCLA adult male offspring compared to CON and CLA groups with no effect of CLA supplementation. An overall effect of a maternal HF diet was observed in adult male vessels with a reduced vasoconstrictor response to phenylephrine and blunted vasodilatory response to acetylcholine (ACh). Furthermore, HF and HFCLA offspring displayed a reduction in nitric oxide pathway function and an increased compensatory EDHF function when compared to CON and CLA groups. These data suggest that a maternal HF diet causes a developmental programming of endothelial dysfunction and hypertension in male offspring which can be partially improved by maternal CLA supplementation, independent of offspring body weight.
    PLoS ONE 02/2015; 10(2):e0115994. DOI:10.1371/journal.pone.0115994 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 17, 2014