Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses

Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
Vaccine (Impact Factor: 3.62). 03/2012; 30(24):3691-702. DOI: 10.1016/j.vaccine.2012.03.025
Source: PubMed


The licensed live attenuated influenza A vaccine (LAIV) in the United States is created by making a reassortant containing six internal genes from a cold-adapted master donor strain (ca A/AA/6/60) and two surface glycoprotein genes from a circulating/emerging strain (e.g., A/CA/7/09 for the 2009/2010 H1N1 pandemic). Technologies to rapidly create recombinant viruses directly from patient specimens were used to engineer alternative LAIV candidates that have genomes composed entirely of vRNAs from pandemic or seasonal strains. Multiple mutations involved in the temperature-sensitive (ts) phenotype of the ca A/AA/6/60 master donor strain were introduced into a 2009 H1N1 pandemic strain rA/New York/1682/2009 (rNY1682-WT) to create rNY1682-TS1, and additional mutations identified in other ts viruses were added to rNY1682-TS1 to create rNY1682-TS2. Both rNY1682-TS1 and rNY1682-TS2 replicated efficiently at 30°C and 33°C. However, rNY1682-TS1 was partially restricted, and rNY1682-TS2 was completely restricted at 39°C. Additionally, engineering the TS1 or TS2 mutations into a distantly related human seasonal H1N1 influenza A virus also resulted pronounced restriction of replication in vitro. Clinical symptoms and virus replication in the lungs of mice showed that although rNY1682-TS2 and the licensed FluMist(®)-H1N1pdm LAIV that was used to combat the 2009/2010 pandemic were similarly attenuated, the rNY1682-TS2 was more protective upon challenge with a virulent mutant of pandemic H1N1 virus or a heterologous H1N1 (A/PR/8/1934) virus. This study demonstrates that engineering key temperature sensitive mutations (PB1-K391E, D581G, A661T; PB2-P112S, N265S, N556D, Y658H) into the genomes of influenza A viruses attenuates divergent human virus lineages and provides an alternative strategy for the generation of LAIVs.

Download full-text


Available from: Xudong Lin, Mar 06, 2015
16 Reads
  • Source
    • "The luciferase-mediated mini-genome replication assay was performed as previously described, using a PolI-driven reporter plasmid and pDZ-based PB2, PB1, PA, and NP bidirectional expression plasmids [18,22]. Briefly, HEK-293T cells in 24-well plates were cotransfected with 0.2 µg each of pPolI-NS-Luc plasmid (pBZ81A36) and plasmids to express the NY1682 PB2 (PB2-WT or PB2-D701N), PB1, PA, and NP proteins, and to control for transfection efficiency, 0.02 µg of the Renilla luciferase plasmid pRL-TK (Promega, Madison, WI) was also cotransfected. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The 2009/2010 pandemic influenza virus (H1N1pdm) contains an avian-lineage PB2 gene that lacks E627K and D701N substitutions important in the pathogenesis and transmission of avian-origin viruses in humans or other mammals. Previous studies have shown that PB2-627K is not necessary because of a compensatory Q591R substitution. The role that PB2-701N plays in the H1N1pdm phenotype is not well understood. Therefore, PB2-D701N was introduced into an H1N1pdm virus (A/New York/1682/2009 (NY1682)) and analyzed in vitro and in vivo. Mini-genome replication assay, in vitro replication characteristics in cell lines, and analysis in the mouse and ferret models demonstrated that PB2-D701N increased virus replication rates and resulted in more severe pathogenicity in mice and more efficient transmission in ferrets. In addition, compared to the NY1682-WT virus, the NY1682-D701N mutant virus induced less IFN-λ and replicated to a higher titer in primary human alveolar epithelial cells. These findings suggest that the acquisition of the PB2-701N substitution by H1N1pdm viruses may result in more severe disease or increase transmission in humans.
    PLoS ONE 06/2013; 8(6):e67616. DOI:10.1371/journal.pone.0067616 · 3.23 Impact Factor
  • Source
    • "Currently, the RG system of cold-adapted LAIV donor strains has been successfully established and is used in almost all vaccine constructs including pandemic vaccines [11,73]. The technique has been recently extended to generate a novel alternative cold-adapted LAIV [74], as an alternative to the classical repeated passage at lower temperatures, allowing the conversion of a wild type virus into a genetically homologous live attenuated vaccine strain. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs.
    07/2012; 1(1):35-49. DOI:10.7774/cevr.2012.1.1.35
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and/or rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented, negative sense RNA genome, from any IBV strain in a single tube/well (IBV-GA). Amplicons for more than one thousand diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse genetics plasmids, which can be used for rescue of recombinant viruses and/or vaccine seed stock creation.
    Journal of clinical microbiology 02/2014; 52(5). DOI:10.1128/JCM.03265-13 · 3.99 Impact Factor
Show more