Article

Potent Antifungal Activity of Pure Compounds from Traditional Chinese Medicine Extracts against Six Oral Candida Species and the Synergy with Fluconazole against Azole-Resistant Candida albicans

Department of Oral Medicine and Traditional Chinese Medicine, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Street, Beijing 100081, China.
Evidence-based Complementary and Alternative Medicine (Impact Factor: 2.18). 02/2012; 2012:106583. DOI: 10.1155/2012/106583
Source: PubMed

ABSTRACT This study was designed to evaluate the in vitro antifungal activities of four traditional Chinese medicine (TCM) extracts. The inhibitory effects of pseudolaric acid B, gentiopicrin, rhein, and alion were assessed using standard disk diffusion and broth microdilution assays. They were tested against six oral Candida species, Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, Candida dubliniensis, and Candida guilliermondii, including clinical isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. It was found that pseudolaric acid B had the most potent antifungal effect and showed similar antifungal activity to all six Candida spp, and to isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. The MIC values ranged from 16 to 128 μg/mL. More interestingly, a synergistic effect of pseudolaric acid B in combination with fluconazole was observed. We suggest that pseudolaric acid B might be a potential therapeutic fungicidal agent in treating oral candidiasis.

0 Followers
 · 
196 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudolaric acid B (PAB) is a diterpene acid, isolated from the root and trunk bark of Pseudolarix kaempferi Gordon (Pinaceae). Previous studies demonstrated that PAB induced G2/M arrest and apoptosis in several cancer cell lines, but the relationship between G2/M arrest and apoptosis is still unclear. We examined the relevant signaling pathways for human cervical carcinoma HeLa cells treated with 1 μM PAB. Intriguingly, we found that activation of ATM-p53 signaling pathway by the treatment with 1 μM PAB played a protective role for the subsequent apoptosis. Although the treatment with 1 μM PAB up-regulated the expression of cyclin B1 and p-Histone 3 (mitotic markers) at 12 h, the expression decreased at 24 and 36 h along with the up-down expression of mitotic markers. The expressions of p-ATM and p-p53 that were involved in G2/M arrest increased at 12 h after treatment with PAB. However, a prolonged treatment with PAB (longer than 24 h) caused cell apoptosis. When the cells were arrested in G1 or S phase by the treatment with serum starvation, cytosine β-D-arabinofuranoside (Ara-C) or hydroxyurea (Hu), the apoptotic ratio induced by PAB decreased.
    Archives of Biochemistry and Biophysics 06/2014; 558. DOI:10.1016/j.abb.2014.05.029 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/purpose It is difficult to manage coinfections in critically ill patients, especially in the presence of mixed-species biofilms. The aim of this study was to seek an effective drug combination for managing the dual-species biofilm of Candida albicans and Staphylococcus aureus. Methods The interaction between fluconazole and minocycline against polymicrobial planktonic cells and polymicrobial biofilms formed over four different time intervals (4 hours, 8 hours, 12 hours, and 24 hours) was investigated using a microdilution checkerboard method. To explore whether the combined effects against the polymicrobial cultures involved calcium regulation, the effects of benidipine and ethylene glycol tetraacetic acid were characterized using a plate streaking method and a liquid-based quantitative method. Results Fluconazole combined with minocycline exerted strong effects against polymicrobial planktonic cells and polymicrobial biofilms formed over 4 hours, 8 hours, and 12 hours. The addition of benidipine and ethylene glycol tetraacetic acid enhanced the activity of the drug combination, suggesting that the combined effects may involve the perturbation of calcium homeostasis. Conclusion Fluconazole in combination with minocycline is a potential approach for counteracting C. albicans–S. aureus dual-species biofilms.
    Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi 05/2014; DOI:10.1016/j.jmii.2014.03.010 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and Principal Findings We detected the baicalin inhibition effects on three isotope-labeled precursors of 3H–UdR, 3H-TdR and 3H-leucine incorporation into Candida albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca2+-Mg2+ ATPase, cytosolic Ca2+ concentration, the cell cycle and apoptosis, as well as the ultrastructure of Candida albicans were also tested. We found that baicalin inhibited 3H–UdR, 3H-TdR and 3H-leucine incorporation into Candida albicans (P<0.005). The activities of the SDH and Ca2+-Mg2+ ATPase of Candida albicans in baicalin groups were lower than those in control group (P<0.05). Ca2+ concentrations of Candida albincans in baicalin groups were much higher than those in control group (P<0.05). The ratio of Candida albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P<0.01). There were a significant differences in the apoptosis rate of Candida albicans between baicalin and control groups (P<0.01). After 12-48h incubationwith baicalin (1 mg/ml),Candida albicans shown to be markedly damaged under transmission electron micrographs. Innovation and Significance Baicalin can increase the apoptosis rate of Candida albicans..These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca2+-Mg2+ ATPase, increasing cytosolic Ca2+ content and damaging the ultrastructure of Candida albicans.
    Biochemical and Biophysical Research Communications 08/2014; 451(1). DOI:10.1016/j.bbrc.2014.07.040 · 2.28 Impact Factor

Full-text (3 Sources)

Download
63 Downloads
Available from
Jun 1, 2014