High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography

Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA.
Optics Express (Impact Factor: 3.53). 03/2012; 20(7):7694-705. DOI: 10.1364/OE.20.007694
Source: PubMed

ABSTRACT In this paper, the features of the intensity-based Doppler variance (IBDV) method were analyzed systemically with a flow phantom. The effects of beam scanning density, flow rate and the time interval between neighboring A-lines on the performance of this method were investigated. The IBDV method can be used to quantify the flow rate and its sensitivity can be improved by increasing the time interval between the neighboring A-lines. A higher sensitivity IBDV method that applies the algorithm along the slower scan direction was proposed. In comparison to laser speckle imaging maps of blood flow, we demonstrated the ability of the method to identify vessels with altered blood flow. In clinical measurements, we demonstrated the ability of the method to image vascular networks with exquisite spatial resolution and at depths up to 1.2 mm in human skin. These results collectively demonstrated the potential of the method to monitor the microvasculature during disease progression and in response to therapeutic intervention.


Available from: Bernard Choi, Apr 26, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we investigated how bulk motion degraded the quality of optical coherence tomography (OCT) angiography that was obtained through calculating interframe signal variation, i.e., interframe signal variation based optical coherence angiography (isvOCA). We demonstrated theoretically and experimentally that the spatial average of isvOCA signal had an explicit functional dependency on bulk motion. Our result suggested that the bulk motion could lead to an increased background in angiography image. Based on our motion analysis, we proposed to reduce image artifact induced by transient bulk motion in isvOCA through adaptive thresholding. The motion artifact reduced angiography was demonstrated in a 1.3μm spectral domain OCT system. We implemented signal processing using graphic processing unit for real-time imaging and conducted in vivo microvasculature imaging on human skin. Our results clearly showed that the adaptive thresholding method was highly effective in the motion artifact removal for OCT angiography.
    Biomedical Optics Express 10/2014; 5(11):3833-3847. DOI:10.1364/BOE.5.003833 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Raster-scan optoacoustic mesoscopy (RSOM) comes with high potential for in vivo diagnostic imaging in dermatology, since it allows for high resolution imaging of the natural chromophores melanin, and hemoglobin at depths of several millimeters. We have applied ultra-wideband RSOM, in the 10 MHz to 160 MHz frequency band, to image healthy human skin at distinct locations. We analyzed the anatomical information contained at different frequency ranges of the optoacoustic (photoacoustic) signals in relation to resolving features of different skin layers in vivo. We further compared results obtained from glabrous and hairy skin and identify that frequencies above 60 MHz are necessary for revealing the epidermal thickness, a prerequisite for determining the invasion depth of melanoma in future studies. By imaging a benign nevus we show that the applied RSOM system provides strong contrast of melanin-rich structures. We further identify the spectral bands responsible for imaging the fine structures in the stratum corneum, assessing dermal papillae, and resolving microvascular structures in the horizontal plexus.
    IEEE Transactions on Medical Imaging 10/2014; 34(2). DOI:10.1109/TMI.2014.2365239 · 3.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fractional resurfacing creates hundreds of microscopic wounds in the skin without injuring surrounding tissue. This technique allows rapid wound healing owing to small injury regions, and has been proven as an effective method for repairing photodamaged skin. Recently, ablative fractional laser (AFL) treatment has been demonstrated to facilitate topical drug delivery into skin. However, induced fractional photothermolysis depends on several parameters, such as incident angle, exposure energy, and spot size of the fractional laser. In this study, we used fractional CO2 laser to induce microscopic ablation array on the nail for facilitating drug delivery through the nail. To ensure proper energy delivery without damaging tissue structures beneath the nail plate, optical coherence tomography (OCT) was implemented for quantitative evaluation of induced microscopic ablation zone (MAZ). Moreover, to further study the feasibility of drug delivery, normal saline was dripped on the exposure area of fingernail and the speckle variance in OCT signal was used to observe water diffusion through the ablative channels into the nail plate. In conclusion, this study establishes OCT as an effective tool for the investigation of fractional photothermolysis and water/drug delivery through microscopic ablation channels after nail fractional laser treatment.
    Biomedical Optics Express 11/2014; 5(11):3949-3959. DOI:10.1364/BOE.5.003949 · 3.50 Impact Factor