Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction

Photonics Group, Department of Physics, Imperial College London, SW7 2AZ, UK.
Optics Express (Impact Factor: 3.49). 03/2012; 20(7):7323-37. DOI: 10.1364/OE.20.007323
Source: PubMed


We demonstrate two techniques to improve the quality of reconstructed optical projection tomography (OPT) images using the modulation transfer function (MTF) as a function of defocus experimentally determined from tilted knife-edge measurements. The first employs a 2-D binary filter based on the MTF frequency cut-off as an additional filter during back-projection reconstruction that restricts the high frequency information to the region around the focal plane and progressively decreases the spatial frequency bandwidth with defocus. This helps to suppress "streak" artifacts in OPT data acquired at reduced angular sampling, thereby facilitating faster OPT acquisitions. This method is shown to reduce the average background by approximately 72% for an NA of 0.09 and by approximately 38% for an NA of 0.07 compared to standard filtered back-projection. As a biological illustration, a Fli:GFP transgenic zebrafish embryo (3 days post-fertilisation) was imaged to demonstrate the improved imaging speed (a quarter of the acquisition time). The second method uses the MTF to produce an appropriate deconvolution filter that can be used to correct for the spatial frequency modulation applied by the imaging system.

Download full-text


Available from: L. Chen, Feb 04, 2014
39 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe an angular multiplexing technique for optical projection tomography that improves resolution, signal-to-noise ratio, and imaging speed by ameliorating the trade-off between spatial resolution and depth of field and improving the light collection efficiency. Here we demonstrate that imaging at two orthogonal angular projections simultaneously, focused on shifted planes in the sample, improves the average spatial resolution by ∼20% and the light collection efficiency by a factor of ∼4, thereby enabling increased acquisition speed and reduced light dose.
    Optics Letters 03/2013; 38(6):851-3. DOI:10.1364/OL.38.000851 · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new technique termed Helical Optical Projection Tomography (hOPT) has been developed with the aim to overcome some of the limitations of current 3D optical imaging techniques. hOPT is based on Optical Projection Tomography (OPT) with the major difference that there is a translation of the sample in the vertical direction during the image acquisition process, requiring a new approach to image reconstruction. Contrary to OPT, hOPT makes possible to obtain 3D-optical images of intact long samples without imposing limits on the sample length. This has been tested using hOPT to image long murine tissue samples such as spinal cords and large intestines. Moreover, 3D-reconstructed images of the colon of DSS-treated mice, a model for Inflammatory Bowel Disease, allowed the identification of the structural alterations. Finally, the geometry of the hOPT device facilitates the addition of a Selective Plane Illumination Microscopy (SPIM) arm, providing the possibility of delivering high resolution images of selected areas together with complete volumetric information.
    Optics Express 11/2013; 21(44):25912-25925. DOI:10.1364/OE.21.025912 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soft X-ray tomography (SXT) is becoming a powerful imaging technique to analyze eukaryotic whole cells close to their native state. Central to the analysis of the quality of SXT 3D reconstruction is the estimation of the spatial resolution and Depth of Field of the X-ray microscope. In turn, the characterization of the Modulation Transfer Function (MTF) of the optical system is key to calculate both parameters. Consequently, in this work we introduce a fully automated technique to accurately estimate the transfer function of such an optical system. Our proposal is based on the preprocessing of the experimental images to obtain an estimate of the input pattern, followed by the analysis in Fourier space of multiple orders of a Siemens Star test sample, extending in this way its measured frequency range.
    Optics Express 04/2015; 23(8). DOI:10.1364/OE.23.009567 · 3.49 Impact Factor