Article

Biologic effects of SMF and paclitaxel on K562 human leukemia cells.

College of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China.
General Physiology and Biophysics (Impact Factor: 0.85). 03/2012; 31(1):1-10. DOI: 10.4149/gpb_2012_002
Source: PubMed

ABSTRACT In this study, we evaluated the ability of 8.8 mT static magnetic fields (SMF) to enhance the in vitro action of a chemotherapeutic agent, paclitaxel, against K562 human leukemia cells. We analyzed the cell proliferation, cell cycle distribution, DNA damage and alteration of cell surface and cell organelle ultrastructure after K562 cells were exposed to paclitaxel in the presence or absence of 8.8 mT SMF. The results showed that in the presence of SMF, the efficient concentration of paclitaxel on K562 cells was decreased from 50 to 10 ng/ml. Cell cycle analysis indicated that K562 cells treated with SMF plus paclitaxel were arrested at the G2 phase, which was mainly induced by paclitaxel. Through comet assay, we found that the cell cycle arrest effect of paclitaxel with or without SMF on K562 cells was correlated with DNA damage. The results of atomic force microscopy and transmission electron microscopy observation showed that the cell ultrastructure was altered in the group treated with the combination of SMF and paclitaxel, holes and protuberances were observed, and vacuoles in cytoplasm were augmented. Our data indicated that the potency of the combination of SMF and paclitaxel was greater than that of SMF or paclitaxel alone on K562 cells, and these effects were correlated with DNA damage induced by SMF and paclitaxel. Therefore, the alteration of cell membrane permeability may be one important mechanism underlying the effects of SMF and paclitaxel on K562 cells.

0 Bookmarks
 · 
194 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effects of sinusoidal ELF-MF (1 mT; 50 Hz) on the apoptosis induced by four different compounds, namely vinblastine, etoposide, quercetin, and resveratrol, in human K562 chronic myeloid leukemia cells. The exposure to ELF-MF did not affect growth and viability of untreated K562 cells and did not influence the anti-proliferative effects of resveratrol, vinblastine, and etoposide. On the contrary, in quercetin-treated cells, exposure to ELF-MF significantly reduced the percentage of apoptotic cells and the caspase-3 activity and modified the cell cycle profile especially after 48 h of exposure. In addition, the simultaneous treatments for 24 h with quercetin plus ELF-MF increased Bcl-2 protein expression and prevented quercetin-induced downregulation of Mcl-1 and Bcl-xL. Finally, an increase of HSP70 expression was also observed after prolonged ELF-MF treatment. The ELF-MF-dependent modulation of the expression of anti-apoptotic Bcl-2 family and Hsp70 proteins could act as a pro-survival mechanism in K562 cells.
    Molecular and Cellular Biochemistry 08/2014; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we explored the mechanism of the killing effects of a moderate-intensity static magnetic field (SMF) and cisplatin (DDP) on K562 cells. We analyzed the metabolic activity of cells, the extracellular DDP content, and P-glycoprotein (P-gp) expression after K562 cells were exposed continuously to a uniform 8.8 mT SMF for 8 h, with or without DDP. We found that SMF combined with DDP (10 µg/ml) significantly inhibited the metabolic activity of K562 cells (P < 0.05), while neither DDP nor SMF alone affected the metabolic activity of these cells. In the SMF + DDP group, extracellular DDP content was significantly reduced (P < 0.05). DDP also induced the expression of P-gp (P < 0.05). By contrast, in the SMF + DDP group, P-gp expression decreased compared with the DDP group (P < 0.05). Taken together, our results showed that 8.8 mT SMF enhanced the killing potency of DDP on K562 cells by decreasing the expression of P-gp. Bioelectromagnetics 35:XX–XX, 2014. © 2014 Wiley Periodicals, Inc.
    Bioelectromagnetics 08/2014; · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200-500 mT), Open field (300-700 mT) and/or inhomogeneous High field (1.5-3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7-232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled.
    PLoS ONE 01/2014; 9(11):e113530. · 3.53 Impact Factor