Mechanisms of Ploidy Increase in Human Cancers: A New Role for Cell Cannibalism

Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, New York 10065, USA.
Cancer Research (Impact Factor: 9.33). 03/2012; 72(7):1596-601. DOI: 10.1158/0008-5472.CAN-11-3127
Source: PubMed


Aneuploidy is a hallmark of human cancers originating from abnormal mitoses. Many aneuploid cancer cells also have greater-than-diploid DNA content, suggesting that polyploidy is a common precursor to aneuploidy during tumor progression. Polyploid cells can originate from cell fusion, endoreplication, and cytokinesis failure. Recently we found that cell cannibalism by entosis, a form of cell engulfment involving live cells, also leads to polyploidy, as internalized cells disrupt cytokinesis of their engulfing cell hosts. By this mechanism, cannibalistic cell behavior could promote tumor progression by leading to aneuploidy. Here, we discuss cell cannibalism in cancer and other mechanisms that result in the formation of polyploid cancer cells.

1 Follower
9 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that the karyotype of animal cells cultured in vitro tends to become aneuploid as the culture ages. Aneuploidy can cause genetic instability, alter the biological properties of cells, and affect their application in genetic studies and cell engineering. Understanding the causes and mechanisms of aneuploidy is primary to control its occurrence in cultured cells, and is also helpful to understand the mechanisms of tumorigenesis because aneuploidy is a hallmark of tumor cells. This review underscores the potential role of reactive oxygen species (ROS) toxicity in spontaneous aneuploidy of cultured cells. The underlying mechanisms and possible sources of ROS are also discussed.
    Tissue and Cell 10/2012; 45(1). DOI:10.1016/j.tice.2012.09.004 · 1.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyploidy, or whole-genome duplication (WGD), is a recurrent mutation both in cell lineages and over evolutionary time. By globally changing the relationship between gene copy number and other cellular entities, it can induce dramatic changes at the cellular and phenotypic level. Perhaps surprisingly, then, the insights that these events can bring to understanding other cellular features are not as well appreciated as they could be. In this review, we draw on examples of polyploidy from animals, plants and yeast to explore how investigations of polyploid cells have improved our understanding of the cell cycle, biological network complexity, metabolic phenotypes and tumor biology. We argue that the study of polyploidy across organisms, cell types, and time scales serves not only as a window into basic cell biology, but also as a basis for a predictive biology with applications ranging from crop improvement to treating cancer.
    Seminars in Cell and Developmental Biology 03/2013; 24(4). DOI:10.1016/j.semcdb.2013.02.002 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of 'entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintaining homeostasis, aberrant cell-in-cell process contributes to the etiopathology in humans. Indeed, cell-in-cell is observed in many pathological processes of human diseases. In this review, we intend to discuss the biological models of cell-in-cell structures under physiological and pathological status.
    Cell Death & Disease 05/2013; 4(5):e630. DOI:10.1038/cddis.2013.147 · 5.01 Impact Factor
Show more


9 Reads
Available from