Measuring and comparing brain cortical surface area and other areal quantities.

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
NeuroImage (Impact Factor: 6.25). 03/2012; 61(4):1428-43. DOI: 10.1016/j.neuroimage.2012.03.026
Source: PubMed

ABSTRACT Structural analysis of MRI data on the cortical surface usually focuses on cortical thickness. Cortical surface area, when considered, has been measured only over gross regions or approached indirectly via comparisons with a standard brain. Here we demonstrate that direct measurement and comparison of the surface area of the cerebral cortex at a fine scale is possible using mass conservative interpolation methods. We present a framework for analyses of the cortical surface area, as well as for any other measurement distributed across the cortex that is areal by nature. The method consists of the construction of a mesh representation of the cortex, registration to a common coordinate system and, crucially, interpolation using a pycnophylactic method. Statistical analysis of surface area is done with power-transformed data to address lognormality, and inference is done with permutation methods. We introduce the concept of facewise analysis, discuss its interpretation and potential applications.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in diffusion weighted image acquisition and processing allow for the construction of anatomically highly precise structural connectomes. In this study, we introduce a method to compute high-resolution whole-brain structural connectome. Our method relies on cortical and subcortical triangulated surface models, and on a large number of fiber tracts generated using a probabilistic tractography algorithm. Each surface triangle is a node of the structural connectivity graph while edges are fiber tract densities across pairs of nodes. Surface-based registration and downsampling to a common surface space are introduced for group analysis whereas connectome surface smoothing aimed at improving whole-brain network estimate reliability. Based on 10 datasets acquired from a single healthy subject, we evaluated the effects of repeated probabilistic tractography, surface smoothing, surface registration and downsampling to the common surface space. We show that, provided enough fiber tracts and surface smoothing, good to excellent intra-acquisition reliability could be achieved. Surface registration and downsampling efficiently established triangle-to-triangle correspondence across acquisitions and high inter-acquisition reliability was obtained. Computational time and disk / memory usages were monitored throughout the steps. Although further testing on large cohort of subjects is required, our method presents the potential to accurately model whole-brain structural connectivity at high-resolution.
    NeuroImage 08/2014; · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification.
    Schizophrenia Research 07/2014; · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status.
    NeuroImage: Clinical. 11/2014;


Available from
May 29, 2014