Is losartan the drug for all seasons?

Mount Sinai School of Medicine, New York, USA.
Current Opinion in Pharmacology (Impact Factor: 4.23). 03/2012; 12(2):223-4. DOI: 10.1016/j.coph.2012.02.007
Source: PubMed


Available from: Francesco Ramirez, Oct 28, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G-protein-coupled receptors are appreciated as central components of neurohormonal signaling. Recently, it turned out that they may also play a role in mechanotransduction. The angiotensin II AT(1) receptor was the first G-protein-coupled receptor claimed to be a mechanosensor. In the meantime, several other G(q/11)-coupled receptors were found to be sensitive to mechanical stimuli. Furthermore, there is first evidence to support the concept that G(i/o)-coupled receptors are susceptible to mechanical stimulation as well. Mechanical receptor activation appears to be agonist-independent and is initiated by a conformational change of the receptor protein discernible from agonist-bound conformations. Mechanically induced receptor activation plays a physiological role for myogenic vasoconstriction and is involved in the pathogenesis of cardiac hypertrophy.
    Current Opinion in Pharmacology 12/2010; 11(2):112-6. DOI:10.1016/j.coph.2010.11.003 · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer patients have benefited from the use of targeted therapies directed at specific molecular alterations. To identify additional opportunities for targeted therapy, we searched for genes with marked overexpression in subsets of tumors across a panel of breast cancer profiling studies comprising 3,200 microarray experiments. In addition to prioritizing ERBB2, we found AGTR1, the angiotensin II receptor type I, to be markedly overexpressed in 10-20% of breast cancer cases across multiple independent patient cohorts. Validation experiments confirmed that AGTR1 is highly overexpressed, in several cases more than 100-fold. AGTR1 overexpression was restricted to estrogen receptor-positive tumors and was mutually exclusive with ERBB2 overexpression across all samples. Ectopic overexpression of AGTR1 in primary mammary epithelial cells, combined with angiotensin II stimulation, led to a highly invasive phenotype that was attenuated by the AGTR1 antagonist losartan. Similarly, losartan reduced tumor growth by 30% in AGTR1-positive breast cancer xenografts. Taken together, these observations indicate that marked AGTR1 overexpression defines a subpopulation of ER-positive, ERBB2-negative breast cancer that may benefit from targeted therapy with AGTR1 antagonists, such as losartan.
    Proceedings of the National Academy of Sciences 07/2009; 106(25):10284-9. DOI:10.1073/pnas.0900351106 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive enlargement of the aortic root, leading to dissection, is the main cause of premature death in patients with Marfan's syndrome. Recent data from mouse models of Marfan's syndrome suggest that aortic-root enlargement is caused by excessive signaling by transforming growth factor beta (TGF-beta) that can be mitigated by treatment with TGF-beta antagonists, including angiotensin II-receptor blockers (ARBs). We evaluated the clinical response to ARBs in pediatric patients with Marfan's syndrome who had severe aortic-root enlargement. We identified 18 pediatric patients with Marfan's syndrome who had been followed during 12 to 47 months of therapy with ARBs after other medical therapy had failed to prevent progressive aortic-root enlargement. The ARB was losartan in 17 patients and irbesartan in 1 patient. We evaluated the efficacy of ARB therapy by comparing the rates of change in aortic-root diameter before and after the initiation of treatment with ARBs. The mean (+/-SD) rate of change in aortic-root diameter decreased significantly from 3.54+/-2.87 mm per year during previous medical therapy to 0.46+/-0.62 mm per year during ARB therapy (P<0.001). The deviation of aortic-root enlargement from normal, as expressed by the rate of change in z scores, was reduced by a mean difference of 1.47 z scores per year (95% confidence interval, 0.70 to 2.24; P<0.001) after the initiation of ARB therapy. The sinotubular junction, which is prone to dilation in Marfan's syndrome as well, also showed a reduced rate of change in diameter during ARB therapy (P<0.05), whereas the distal ascending aorta, which does not normally become dilated in Marfan's syndrome, was not affected by ARB therapy. In a small cohort study, the use of ARB therapy in patients with Marfan's syndrome significantly slowed the rate of progressive aortic-root dilation. These findings require confirmation in a randomized trial.
    New England Journal of Medicine 06/2008; 358(26):2787-95. DOI:10.1056/NEJMoa0706585 · 54.42 Impact Factor