High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption.

Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria.
The Journal of nutritional biochemistry (Impact Factor: 4.29). 03/2012; DOI: 10.1016/j.jnutbio.2011.10.013
Source: PubMed

ABSTRACT Obesity is often associated with disorders of iron homeostasis; however, the underlying mechanisms are not fully understood. Hepcidin is a key regulator of iron metabolism and may be responsible for obesity-driven iron deficiency. Herein, we used an animal model of diet-induced obesity to study high-fat-diet-induced changes in iron homeostasis. C57BL/6 mice were fed a standard (SD) or high-fat diet (HFD) for 8 weeks, and in addition, half of the mice received high dietary iron (Fe+) for the last 2 weeks. Surprisingly, HFD led to systemic iron deficiency which was traced back to reduced duodenal iron absorption. The mRNA and protein expressions of the duodenal iron transporters Dmt1 and Tfr1 were significantly higher in HFD- than in SD-fed mice, indicating enterocyte iron deficiency, whereas the mRNA levels of the duodenal iron oxidoreductases Dcytb and hephaestin were lower in HFD-fed mice. Neither hepatic and adipose tissue nor serum hepcidin concentrations differed significantly between SD- and HFD-fed mice, whereas dietary iron supplementation resulted in increased hepatic hepcidin mRNA expression and serum hepcidin levels in SD as compared to HFD mice. Our study suggests that HFD results in iron deficiency which is neither due to intake of energy-dense nutrient poor food nor due to increased sequestration in the reticulo-endothelial system but is the consequence of diminished intestinal iron uptake. We found that impaired iron absorption is independent of hepcidin but rather results from reduced metal uptake into the mucosa and discordant oxidoreductases expressions despite enterocyte iron deficiency.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Whether being overweight or obese is associated with increased risk of iron deficiency anemia (IDA) remains controversial. We evaluated the dietary intakes and risk for IDA in relation to body mass index (BMI). One thousand two hundred and seventy-four females aged ≥19 years, enrolled in the third Nutrition and Health Survey in Taiwan (NAHSIT) 2005-2008, were selected. Half of the women were either overweight (24.0%) or obese (25.3%). The overall prevalence of anemia, iron deficiency and IDA among adult women was 19.5%, 8.6% and 6.2%. BMI showed a protective effect on IDA: overweight (odds ratio, OR: 0.365 (0.181-0.736)) and obese (OR: 0.480 (0.259-0.891)) when compared with normal weight. Univariate analysis identified increased IDA risk for overweight/obese women who consumed higher dietary fat but lower carbohydrate (CHO) (OR: 10.119 (1.267-80.79)). No such relationship was found in IDA women with normal weight (OR: 0.375 (0.036-4.022)). Analysis of interaction(s) showed individuals within the highest BMI tertile (T3) had the lowest risk for IDA and the risk increased with increasing tertile groups of fat/CHO ratio; OR 0.381 (0.144-1.008; p = 0.051), 0.370 (0.133-1.026; p = 0.056) and 0.748 (0.314-1.783; p = 0.513); for T1, T2 and T3, respectively. In conclusion, a protective effect of BMI on IDA may be attenuated in women who had increased fat/CHO ratio.
    Nutrients 01/2014; 6(9):3929-3941. · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin has been shown to have many potentially health beneficial properties in vitro and in animal models with clinical studies on the toxicity of curcumin reporting no major side effects. However, curcumin may chelate dietary trace elements and could thus potentially exert adverse effects. Here, we investigated the effects of a 6 month dietary supplementation with 0.2% curcumin on iron, zinc, and copper status in C57BL/6J mice. Compared to non-supplemented control mice, we observed a significant reduction in iron, but not zinc and copper stores, in the liver and the spleen, as well as strongly suppressed liver hepcidin and ferritin expression in the curcumin-supplemented mice. The expression of the iron-importing transport proteins divalent metal transporter 1 and transferrin receptor 1 was induced, while hepatic and splenic inflammatory markers were not affected in the curcumin-fed mice. The mRNA expression of other putative target genes of curcumin, including the nuclear factor (erythroid-derived 2)-like 2 and haem oxygenase 1 did not differ between the groups. Most of the published animal trials with curcumin-feeding have not reported adverse effects on iron status or the spleen. However, it is possible that long-term curcumin supplementation and a Western-type diet may aggravate iron deficiency. Therefore, our findings show that further studies are needed to evaluate the effect of curcumin supplementation on iron status.
    Redox biology. 01/2014; 2:563-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron homeostasis is affected by obesity and obesity-related insulin resistance in a many-facetted fashion. On one hand, iron deficiency and anemia are frequent findings in subjects with progressed stages of obesity. This phenomenon has been well studied in obese adolescents, women and subjects undergoing bariatric surgery. On the other hand, hyperferritinemia with normal or mildly elevated transferrin saturation is observed in approximately one-third of patients with metabolic syndrome (MetS) or nonalcoholic fatty liver disease (NAFLD). This constellation has been named the "dysmetabolic iron overload syndrome (DIOS)". Both elevated body iron stores and iron deficiency are detrimental to health and to the course of obesity-related conditions. Iron deficiency and anemia may impair mitochondrial and cellular energy homeostasis and further increase inactivity and fatigue of obese subjects. Obesity-associated inflammation is tightly linked to iron deficiency and involves impaired duodenal iron absorption associated with low expression of duodenal ferroportin (FPN) along with elevated hepcidin concentrations. This review summarizes the current understanding of the dysregulation of iron homeostasis in obesity.
    Nutrients 09/2014; 6(9):3587-3600. · 3.15 Impact Factor