An optimized activity-based probe for the study of caspase-6 activation.

Cancer Biology Program, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA.
Chemistry & biology (Impact Factor: 6.52). 03/2012; 19(3):340-52. DOI: 10.1016/j.chembiol.2011.12.021
Source: PubMed

ABSTRACT Although significant efforts have been made to understand the mechanisms of caspase activation during apoptosis, many questions remain regarding how and when executioner caspases get activated. We describe the design and synthesis of an activity-based probe that labels caspase-3/-6/-7, allowing direct monitoring of all executioner caspases simultaneously. This probe has enhanced in vivo properties and reduced cross-reactivity compared to our previously reported probe, AB50. Using this probe, we find that caspase-6 undergoes a conformational change and can bind substrates even in the absence of cleavage of the proenzyme. We also demonstrate that caspase-6 activation does not require active caspase-3/-7, suggesting that it may autoactivate or be cleaved by other proteases. Together, our results suggest that caspase-6 activation proceeds through a unique mechanism that may be important for its diverse biological functions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Caspases are proteases that initiate and execute apoptotic cell death. These caspase-dependent events are caused by cleavage of specific substrates that propagate the proapoptotic signal. A number of techniques have been developed to follow caspase activity in vitro and from apoptotic cellular extracts. Many of these techniques use molecules that are based on optimal peptide motifs for each caspase and on our understanding of caspase cleavage events that occur during apoptosis. Although these approaches are useful, there are several drawbacks associated with them. The optimal peptide motifs are not unique recognition sites for each caspase, so techniques that use them may yield information about more than one caspase. Furthermore, caspase cleavage does not take into account the different caspase activation mechanisms. Recently, probes having greater specificity for individual caspases have been developed and are being used successfully. This introduction provides background on the various caspases and introduces a set of complementary techniques to examine the activity, substrate specificity, and activation status of caspases from in vitro or cell culture experiments.
    Cold Spring Harbor Protocols 08/2014; 2014(8):pdb.top070359. · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that crushing the optic nerve induces death of retinal ganglion cells by apoptosis, but suppression of CASP2, which is predominantly activated in retinal ganglion cells, using a stably modified short interfering RNA CASP2, inhibits retinal ganglion cell apoptosis. Here, we report that combined delivery of short interfering CASP2 and inhibition of CASP6 using a dominant negative CASP6 mutant activates astrocytes and Müller cells, increases CNTF levels in the retina and leads to enhanced retinal ganglion cell axon regeneration. In dissociated adult rat mixed retinal cultures, dominant negative CASP6 mutant + short interfering CASP2 treatment also significantly increases GFAP(+) glial activation, increases the expression of CNTF in culture, and subsequently increases the number of retinal ganglion cells with neurites and the mean retinal ganglion cell neurite length. These effects are abrogated by the addition of MAB228 (a monoclonal antibody targeted to the gp130 component of the CNTF receptor) and AG490 (an inhibitor of the JAK/STAT pathway downstream of CNTF signalling). Similarly, in the optic nerve crush injury model, MAB228 and AG490 neutralizes dominant negative CASP6 mutant + short interfering CASP2-mediated retinal ganglion cell axon regeneration, Müller cell activation and CNTF production in the retina without affecting retinal ganglion cell survival. We therefore conclude that axon regeneration promoted by suppression of CASP2 and CASP6 is CNTF-dependent and mediated through the JAK/STAT signalling pathway. This study offers insights for the development of effective therapeutics for promoting retinal ganglion cell survival and axon regeneration.
    Brain 04/2014; · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elucidation of protein-protein interaction (PPI) networks is important for understanding disease mechanisms and for drug discovery. Tertiary-structure-based in silico PPI prediction methods have been developed with two typical approaches: a method based on template matching with known protein structures and a method based on de novo protein docking. However, the template-based method has a narrow applicable range because of its use of template information, and the de novo docking based method does not have good prediction performance. In addition, both of these in silico prediction methods have insufficient precision, and require validation of the predicted PPIs by biological experiments, leading to considerable expenditure; therefore, PPI prediction methods with greater precision are needed. We have proposed a new structure-based PPI prediction method by combining template-based prediction and de novo docking prediction. When we applied the method to the human apoptosis signaling pathway, we obtained a precision value of 0.333, which is higher than that achieved using conventional methods (0.231 for PRISM, a template-based method, and 0.145 for MEGADOCK, a non-template-based method), while maintaining an F-measure value (0.285) comparable to that obtained using conventional methods (0.296 for PRISM, and 0.220 for MEGADOCK). Our consensus method successfully predicted a PPI network with greater precision than conventional template/non-template methods, which may thus reduce the cost of validation by laboratory experiments for confirming novel PPIs from predicted PPIs. Therefore, our method may serve as an aid for promoting interactome analysis.
    BMC proceedings 12/2013; 7(Suppl 7):S6.

Full-text (2 Sources)

Available from
May 27, 2014