Quantum Dot-Fluorescent Protein FRET Probes for Sensing Intracellular pH

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States.
ACS Nano (Impact Factor: 12.03). 03/2012; 6(4):2917-24. DOI: 10.1021/nn2038077
Source: PubMed

ABSTRACT Intracellular pH (pH(i)) plays a critical role in the physiological and pathophysiological processes of cells, and fluorescence imaging using pH-sensitive indicators provides a powerful tool to assess the pH(i) of intact cells and subcellular compartments. Here we describe a nanoparticle-based ratiometric pH sensor, comprising a bright and photostable semiconductor quantum dot (QD) and pH-sensitive fluorescent proteins (FPs), exhibiting dramatically improved sensitivity and photostability compared to BCECF, the most widely used fluorescent dye for pH imaging. We found that Förster resonance energy transfer between the QD and multiple FPs modulates the FP/QD emission ratio, exhibiting a >12-fold change between pH 6 and 8. The modularity of the probe enables customization to specific biological applications through genetic engineering of the FPs, as illustrated by the altered pH range of the probe through mutagenesis of the fluorescent protein. The QD-FP probes facilitate visualization of the acidification of endosomes in living cells following polyarginine-mediated uptake. These probes have the potential to enjoy a wide range of intracellular pH imaging applications that may not be feasible with fluorescent proteins or organic fluorophores alone.

Download full-text


Available from: Allison Marie Dennis, Aug 01, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The glass surface of a glass-polydimethylsiloxane (PDMS) microfluidic channel was modified to develop a solid-phase assay for quantitative determination of nucleic acids. Electroosmotic flow (EOF) within channels was used to deliver and immobilize semiconductor quantum dots (QDs), and electrophoresis was used to decorate the QDs with oligonucleotide probe sequences. These processes took only minutes to complete. The QDs served as energy donors in fluorescence resonance energy transfer (FRET) for transduction of nucleic acid hybridization. Electrokinetic injection of fluorescent dye (Cy3) labeled oligonucleotide target into a microfluidic channel and subsequent hybridization (within minutes) provided the proximity for FRET, with emission from Cy3 being the analytical signal. The quantification of target concentration was achieved by measurement of the spatial length of coverage by target along a channel. Detection of femtomole quantities of target was possible with a dynamic range spanning an order of magnitude. The assay provided excellent resistance to nonspecific interactions of DNA. Further selectivity of the assay was achieved using 20% formamide, which allowed discrimination between a fully complementary target and a 3 base pair mismatch target at a contrast ratio of 4:1.
    Analytical Chemistry 12/2011; 84(1):312-9. DOI:10.1021/ac2025943 · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a water soluble and fluorescent biotinylated probe derived from a carbocyanine dye. A high efficiency of energy transfer was measured when the dyes were placed on the surface of streptavidin conjugated quantum dots. The system is a model platform for potential application as a FRET-based fluorescent sensor.
    Photochemical and Photobiological Sciences 09/2012; 12(2). DOI:10.1039/c2pp25174d · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diverse enveloped viruses enter host cells through endocytosis and fuse with endosomal membranes upon encountering acidic pH. Currently, the pH dynamics in virus-carrying endosomes and the relationship between acidification and viral fusion are poorly characterized. Here, we examined the entry of avian retrovirus that requires two sequential stimuli-binding to a cognate receptor and low pH-to undergo fusion. A genetically encoded sensor incorporated into the viral membrane was used to measure the pH in virus-carrying endosomes. Acid-induced virus fusion was visualized as the release of a fluorescent viral content marker into the cytosol. The pH values in early acidic endosomes transporting the virus ranged from 5.6 to 6.5 but were relatively stable over time for a given vesicle. Analysis of viral motility and luminal pH showed that cells expressing the transmembrane isoform of the receptor (TVA950) preferentially sorted the virus into slowly trafficking, less acidic endosomes. In contrast, viruses internalized by cells expressing the GPI-anchored isoform (TVA800) were uniformly distributed between stationary and mobile compartments. We found that the lag times between acidification and fusion were significantly shorter and fusion pores were larger in dynamic endosomes than in more stationary compartments. Despite the same average pH within mobile compartments of cells expressing alternative receptor isoforms, TVA950 supported faster fusion than TVA800 receptor. Collectively, our results suggest that fusion steps downstream of the low-pH trigger are modulated by properties of intracellular compartments harboring the virus.
    Proceedings of the National Academy of Sciences 10/2012; 109(43):17627-32. DOI:10.1073/pnas.1211714109 · 9.81 Impact Factor
Show more