Article

Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin.

Department of Biology, Portland State University, Portland, OR, USA.
Geobiology (Impact Factor: 3.69). 03/2012; 10(4):333-46. DOI: 10.1111/j.1472-4669.2012.00325.x
Source: PubMed

ABSTRACT Diverse microbial communities thrive on and in deep-sea hydrothermal vent mineral deposits. However, our understanding of the inter-field variability in these communities is poor, as limited sampling and sequencing efforts have hampered most previous studies. To explore the inter-field variability in these communities, we used barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA gene to characterize the archaeal and bacterial communities of over 30 hydrothermal deposit samples from six vent fields located along the Eastern Lau Spreading Center. Overall, the bacterial and archaeal communities of the Eastern Lau Spreading Center are similar to other active vent deposits, with a high diversity of Epsilonproteobacteria and thermophilic Archaea. However, the archaeal and bacterial communities from the southernmost vent field, Mariner, were significantly different from the other vent fields. At Mariner, the epsilonproteobacterial genus Nautilia and the archaeal family Thermococcaceae were prevalent in most samples, while Lebetimonas and Thermofilaceae were more abundant at the other vent fields. These differences appear to be influenced in part by the unique geochemistry of the Mariner fluids resulting from active degassing of a subsurface magma chamber. These results show that microbial communities associated with hydrothermal vent deposits in back-arc basins are taxonomically similar to those from mid-ocean ridge systems, but differences in geologic processes between vent fields in a back-arc basin can influence microbial community structure.

0 Bookmarks
 · 
177 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.
    PLoS ONE 01/2015; 10(3):e0119284. DOI:10.1371/journal.pone.0119284 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: http://elib.suub.uni-bremen.de/edocs/00103759-1.pdf
    05/2014, Degree: Dr.rer.nat.