Article

Ongoing clinical trials in AKI.

Division of Nephrology, University of Colorado and Denver Veterans Administration Medical Center, Denver, Colorado, USA.
Clinical Journal of the American Society of Nephrology (Impact Factor: 5.25). 03/2012; 7(5):861-73. DOI: 10.2215/CJN.12191111
Source: PubMed

ABSTRACT AKI is an important public health issue. AKI is a common hospital complication associated with increased in-hospital and long-term mortality, extensive morbidity (including prolonged hospital length of stay), and an estimated annual cost of at least $10 billion in the United States. At present, no specific therapy has been developed to prevent AKI, hasten recovery of kidney function, or abrogate the deleterious systemic effects of AKI. However, recent progress includes establishing a consensus definition of AKI and discovery of novel biomarkers that may allow early detection of AKI. Furthermore, significant insights into the pathophysiology of AKI and its deleterious systemic effects have been gleaned from animal studies. Urgently needed are large, definitive randomized clinical trials testing interventions to prevent and/or treat AKI. This review summarizes and analyzes current ongoing clinical trials registered with clinicaltrials.gov that address prevention or management of AKI. The purpose of this review is to provide a resource for people interested in potential prophylactic and therapeutic approaches to patient care and investigators hoping to plan and execute the next round of randomized clinical trials. Finally, this review discusses research needs that are not addressed by the current clinical trials portfolio and suggests key areas for future research in AKI.

0 Followers
 · 
171 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The context of a diagnostic test is a critical component for the interpretation of its result. This context defines the pretest probability of the diagnosis and forms the basis for the interpretation and value of adding the diagnostic test. In the field of acute kidney injury, a multitude of early diagnostic biomarkers have been developed, but utilization in the appropriate context is less well understood and has not been codified until recently. In order to better operationalize the context and pretest probability assessment for acute kidney injury diagnosis, the renal angina concept was proposed in 2010 for use in both children and adults. Renal angina has been assessed in approximately 1,000 subjects. However, renal angina as a concept is still unfamiliar to most clinicians and the rationale for introducing the term is not obvious. We therefore review the concept and development of renal angina, and the currently available data validating it. We discuss the various arguments for and against this construct. Future research testing the performance of renal angina with acute kidney injury biomarkers is warranted.
    Critical care (London, England) 12/2015; 19(1):779. DOI:10.1186/s13054-015-0779-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMOylation is a form of post-translational modification where small ubiquitin-like modifiers (SUMO) are covalently attached to target proteins to regulate their properties. SUMOylation has been demonstrated during cell stress and implicated in cellular stress response. However, it is largely unclear if SUMOylation contributes to the pathogenesis of kidney diseases, such as acute kidney injury (AKI). Here we have demonstrated a dynamic change of protein SUMOylation in ischemic and cisplatin nephrotoxic AKI in mice. In rat kidney proximal tubular cells (RPTC), cisplatin-induced SUMOylation was diminished by two antioxidants (N-acetylcysteine and dimethylurea), supporting a role of oxidative stress in the activation of SUMOylation. In addition, SUMOylation by SUMO-2/3, but not SUMO-1, was partially suppressed by pifithrin-alpha (a pharmacological inhibitor of p53), supporting a role of p53 in SUMOylation by SUMO-2/3. We further examined the role of SUMOylation during cisplatin treatment of RPTC cells by using ginkgolic acid (GA), a pharmacological inhibitor of SUMOylation. Pretreatment with GA suppressed SUMOylation and importantly, GA enhanced apoptosis during cisplatin incubation. Taken together, the results demonstrate the first evidence of SUMOylation in AKI and suggest that SUMOylation may play a cytoprotective role in kidney tubular cells. Copyright © 2014. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 12/2014; 1852(3). DOI:10.1016/j.bbadis.2014.12.013 · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
    Journal of Visualized Experiments 08/2014; 90(e51644). DOI:10.3791/51644

Preview

Download
4 Downloads