A biomechanical comparison of static versus dynamic lag screw modes for cephalomedullary nails used to fix unstable peritrochanteric fractures

Division of Orthopaedics, Department of Surgery, University of Toronto, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada.
The journal of trauma and acute care surgery 02/2012; 72(2):E65-70. DOI: 10.1097/TA.0b013e3182170823
Source: PubMed


The gamma nail has an option to statically lock its lag screw (static mode) or to allow its lag screw to move within the nail to compress the intertrochanteric fracture (dynamic mode). The purpose of this study was to compare the biomechanical stiffness of static and dynamic lag screw modes for a cephalomedullary nail used to fix an unstable peritrochanteric fracture.
Unstable four-part peritrochanteric fractures were created in 30 synthetic femurs and fixed with Long Gamma 3 Nails. Mechanical tests were conducted for axial, lateral, and torsional stiffness with intact femurs, femur-nail constructs with static lag screw mode,and femur-nail constructs with dynamic lag screw mode. A paired Student's t test was used for all statistical comparisons between test groups.
Axial and torsional stiffness of intact femurs was significantly greater than femur-nail constructs (p < 0.01 all comparisons),whereas lateral stiffness was significantly less (p < 0.01 all comparisons). Axial stiffness of the femur-nail construct was significantly greater (p < 0.01) in static mode (484.3 N/mm 80.2 N/mm) than in dynamic mode (424.1 N/mm 78.0 N/mm).Lateral stiffness was significantly greater (p < 0.01) in static mode (113.9 N/mm 8.4 N/mm) than in dynamic mode (109.5N/mm 8.8 N/mm). Torsional stiffness was significantly greater (p = 0.02) in dynamic mode (114.5 N/mm 28.2 N/mm) than in static mode (111.7 N/mm 27.0 N/mm).
There is a 60 N/mm (12.4%) reduction in axial stiffness when the lag screw is in dynamic mode. Given the statistically significant reduction in axial and lateral stiffness with use of the dynamic mode, static lag screw mode should be further explored clinically for treatment of unstable peritrochanteric fractures.

13 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Femurs are the heaviest, longest, and strongest long bones in the human body and are routinely subjected to cyclic forces. Strain gages are commonly employed to experimentally validate finite element models of the femur in order to generate 3D stresses, yet there is little information on a relatively new infrared (IR) thermography technique now available for biomechanics applications. In this study, IR thermography validated with strain gages was used to measure the principal stresses in the artificial femur model from Sawbones (Vashon, WA, USA) increasingly being used for biomechanical research. The femur was instrumented with rosette strain gages and mechanically tested using average axial cyclic forces of 1500N, 1800N, and 2100N, representing 3 times body weight for a 50kg, 60kg, and 70kg person. The femur was oriented at 7° of adduction to simulate the single-legged stance phase of walking. Stress maps were also obtained using an IR thermography camera. Results showed good agreement of IR thermography vs. strain gage data with a correlation of R(2)=0.99 and a slope=1.08 for the straight line of best fit. IR thermography detected the highest principal stresses on the superior-posterior side of the neck, which yielded compressive values of -91.2MPa (at 1500N), -96.0MPa (at 1800N), and -103.5MPa (at 2100N). There was excellent correlation between IR thermography principal stress vs. axial cyclic force at 6 locations on the femur on the lateral (R(2)=0.89-0.99), anterior (R(2)=0.87-0.99), and posterior (R(2)=0.81-0.99) sides. This study shows IR thermography's potential for future biomechanical applications.
    Medical Engineering & Physics 03/2012; 34(10). DOI:10.1016/j.medengphy.2012.02.012 · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Few biomechanical studies exist on femoral cementless press-fit stems for revision total knee replacement (TKR) surgeries. The aim of this study was to compare the mechanical quality of the femur-stem interface for a series of commercially available press-fit stems, because this interface may be a 'weak link' which could fail earlier than the femur-TKR bond itself. Also, the femur-stem interface may become particularly critical if distal femur bone degeneration, which may necessitate or follow revision TKR, ever weakens the femur-TKR bond itself. The authors implanted five synthetic femurs each with a Sigma Short Stem (SSS), Sigma Long Stem (SLS), Genesis II Short Stem (GSS), or Genesis II Long Stem (GLS). Axial stiffness, lateral stiffness, 'offset load' torsional stiffness, and 'offset load' torsional strength were measured with a mechanical testing system using displacement control. Axial (range = 1047-1461 N/mm, p = 0.106), lateral (range = 415-462 N/mm, p = 0.297), and torsional (range = 115-139 N/mm, p > 0.055) stiffnesses were not different between groups. The SSS had higher torsional strength (863 N) than the other stems (range = 167-197 N, p < 0.001). Torsional failure occurred by femoral 'spin' around the stem's long axis. There was poor linear correlation between the femur-stem interface area versus axial stiffness (R = 0.38) and torsional stiffness (R = 0.38), and there was a moderate linear correlation versus torsional strength (R = 0.55). Yet, there was a high inverse linear correlation between interfacial surface area versus lateral stiffness (R = 0.79), although this did not result in a statistical difference between stem groups (p = 0.297). These press-fit stems provide equivalent stability, except that the SSS has greater torsional strength.
    Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine 11/2012; 226(11):848-57. DOI:10.1177/0954411912453246 · 1.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Few experimental studies have examined surgical drilling in human bone, and no studies have inquired into this aspect for a popular commercially-available artificial bone used in biomechanical studies. Sixteen fresh-frozen human femurs and five artificial femurs were obtained. Cortical specimens were mounted into a clamping system equipped with a thrust force and torque transducer. Using a CNC machine, unicortical holes were drilled in each specimen at 1000 rpm, 1250 rpm, and 1500 rpm with a 3.2 mm diameter surgical drill bit. Feed rate was 120 mm/min. Statistical significance was set at p < 0.05. Force at increasing spindle speed (1000 rpm, 1250 rpm, and 1500 rpm), respectively, showed a range for human femurs (198.4 ± 14.2 N, 180.6 ± 14.0 N, and 176.3 ± 11.2 N) and artificial femurs (87.2 ± 19.3 N, 82.2 ± 11.2 N, and 75.7 ± 8.8 N). For human femurs, force at 1000 rpm was greater than at other speeds (p ≤ 0.018). For artificial femurs, there was no speed effect on force (p ≥ 0.991). Torque at increasing spindle speed (1000 rpm, 1250 rpm, and 1500 rpm), respectively, showed a range for human femurs (186.3 ± 16.9 N[middle dot]mm, 157.8 ± 16.1 N[middle dot]mm, and 140.2 ± 16.4 N[middle dot]mm) and artificial femurs (67.2 ± 8.4 N[middle dot]mm, 61.0 ± 2.9 N[middle dot]mm, and 53.3 ± 2.9 N[middle dot]mm). For human femurs, torque at 1000 rpm was greater than at other speeds (p < 0.001). For artificial femurs, there was no difference in torque for 1000 rpm versus higher speeds (p ≥ 0.228), and there was only a borderline difference between the higher speeds (p = 0.046). Concerning human versus artificial femurs, their behavior was different at every speed (force, p ≤ 0.001; torque, p < 0.001). For human specimens at 1500 rpm, force and torque were linearly correlated with standardized bone mineral density (sBMD) and the T-score used to clinically categorize bone quality (R ≥ 0.56), but there was poor correlation with age at all speeds (R ≤ 0.37). These artificial bones fail to replicate force and torque in human cortical bone during surgical drilling. To date, this is the largest series of human long bones biomechanically tested for surgical drilling.
    Journal of Biomechanical Engineering 12/2012; 134(12):124503. DOI:10.1115/1.4007953 · 1.78 Impact Factor
Show more