Article

Neuronal Functions of ESCRTs

Department of Biotechnology, College of Life Science and Nano Technology, Hannam University, Dajeon 305-811, Korea.
Experimental neurobiology 03/2012; 21(1):9-15. DOI: 10.5607/en.2012.21.1.9
Source: PubMed

ABSTRACT The endosomal sorting complexes required for transport (ESCRTs) regulate protein trafficking from endosomes to lysosomes. Recent studies have shown that ESCRTs are involved in various cellular processes, including membrane scission, microRNA function, viral budding, and the autophagy pathway in many tissues, including the nervous system. Indeed, dysfunctional ESCRTs are associated with neurodegeneration. However, it remains largely elusive how ESCRTs act in post-mitotic neurons, a highly specialized cell type that requires dynamic changes in neuronal structures and signaling for proper function. This review focuses on our current understandings of the functions of ESCRTs in neuronal morphology, synaptic plasticity, and neurodegenerative diseases.

0 Followers
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodevelopmental disorders include a wide range of diseases such as autism spectrum disorders and mental retardation. Mutations in several genes that regulate neural development and synapse function have been identified in neurodevelopmental disorders. Interestingly, some affected genes and pathways in these diseases are associated with the autophagy pathway. Autophagy is a complex, bulky degradative process that involves the sequestration of cellular proteins, RNA, lipids, and cellular organelles into lysosomes. Despite recent progress in elucidating the genetics and molecular pathogenesis of these disorders, little is known about the pathogenic mechanisms and autophagy-related pathways involved in common neurodevelopmental disorders. Therefore, in this review, we focus on the current understanding of neuronal autophagy as well as recent findings on genetics and the roles of autophagy pathway in common neurodevelopmental disorders.
    09/2013; 22(3):133-142. DOI:10.5607/en.2013.22.3.133
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most neurodegenerative diseases are associated with mitochondrial dysfunction. In humans mutations in mitochondrial genes result in a range of phenotypic outcomes which do not correlate well with the underlying genetic cause. Other neurodegenerative diseases are caused by mutations that affect the function and trafficking of lysosomes, endosomes and autophagosomes. Many of the complexities of these human diseases can be avoided by studying them in the simple eukaryotic model Dictyostelium discoideum. Scope of Review This review describes research using Dictyostelium to study cytopathological pathways underlying a variety of neurodegenerative diseases including mitochondrial, lysosomal and vesicle trafficking disorders. Major Conclusions Generalized mitochondrial respiratory deficiencies in Dictyostelium produce a consistent pattern of defective phenotypes that are caused by chronic activation of a cellular energy sensor AMPK (AMP-activated protein kinase) and not ATP deficiency per se. Surprisingly, when individual subunits of Complex I are knocked out, both AMPK-dependent and AMPK-independent, subunit-specific phenotypes are observed. Many nonmitochondrial proteins associated with neurological disorders have homologues in Dictyostelium and are associated with the function and trafficking of lysosomes and endosomes. Conversely, some genes associated with neurodegenerative disorders do not have homologues in Dictyostelium and this provides a unique avenue for studying these mutated proteins in the absence of endogeneous protein. General Significance Using the Dictyostelium model we have gained insights into the sublethal cytopathological pathways whose dysregulation contributes to phenotypic outcomes in neurodegenerative disease. This work is beginning to distinguish correlation, cause and effect in the complex network of cross talk between the various organelles involved. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
    Biochimica et Biophysica Acta 10/2013; 1840(4). DOI:10.1016/j.bbagen.2013.10.019 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Members of two seemingly unrelated kindreds of Arab Moslem origin presented with pronounced early onset spastic paraparesis of upper and lower limbs, mild intellectual disability, kyphosis, pectus carinatum and hypertrichosis. The authors performed neurological and developmental examinations on the affected individuals. The authors conducted whole genome linkage and haplotype analyses, followed by sequencing of candidate genes; RNA and protein expression studies; and finally proof of principle investigations on knockdown morpholino oligonucleotide injected zebrafish. The authors characterise a novel form of autosomal recessive complex hereditary spastic paraparesis (CHSP). MRI studies of brain and spinal cord were normal. Within a single significantly linked locus the authors ultimately identified a homozygous missense mutation c.1146A>T (p.K382N) in the vacuolar protein sorting 37A (Vps37A) gene, fully penetrant and segregating with the disease in both families. Mobility was significantly reduced in Vps37A knockdown morpholino oligonucleotide injected zebrafish, supporting the causal relationship between mutations in this gene and the phenotype described in the patients of this study. The authors provide evidence for the involvement of Vps37A, a member of the endosomal sorting complex required for transport (ESCRT) system, in upper motor neuron disease. The ESCRT system has been shown to play a central role in intracellular trafficking, in the maturation of multivesicular bodies and the sorting of ubiquitinated membrane proteins into internal luminal vesicles. Further investigation of mechanisms by which dysfunction of this gene causes CHSP will contribute to the understanding of intracellular trafficking of vesicles by the ESCRT machinery and its relevance to CHSP.
    Journal of Medical Genetics 06/2012; 49(7):462-72. DOI:10.1136/jmedgenet-2012-100742 · 5.64 Impact Factor

Preview (2 Sources)

Download
0 Downloads
Available from