Article

Multiple leptospiral sphingomyelinases (or are there?).

Department of Animal Sciences, University of Hyderabad, Hyderabad, India.
Microbiology (Impact Factor: 3.06). 03/2012; 158(Pt 5):1137-46. DOI: 10.1099/mic.0.057737-0
Source: PubMed

ABSTRACT Culture supernatants of leptospiral pathogens have long been known to haemolyse erythrocytes. This property is due, at least in part, to sphingomyelinase activity. Indeed, genome sequencing reveals that pathogenic Leptospira species are richly endowed with sphingomyelinase homologues: five genes have been annotated to encode sphingomyelinases in Leptospira interrogans. Such redundancy suggests that this class of genes is likely to benefit leptospiral pathogens in their interactions with the mammalian host. Surprisingly, sequence comparison with bacterial sphingomyelinases for which the crystal structures are known reveals that only one of the leptospiral homologues has the active site amino acid residues required for enzymic activity. Based on studies of other bacterial toxins, we propose that leptospiral sphingomyelinase homologues, irrespective of their catalytic activity, may possess additional molecular functions that benefit the spirochaete. Potential secretion pathways and roles in pathogenesis are discussed, including nutrient acquisition, dissemination, haemorrhage and immune evasion. Although leptospiral sphingomyelinase-like proteins are best known for their cytolytic properties, we believe that a better understanding of their biological role requires the examination of their sublytic properties as well.

0 Bookmarks
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptospirosis, caused by pathogenic spirochetes belonging to the genus Leptospira, is a zoonosis with important impacts on human and animal health worldwide. Research on the mechanisms of Leptospira pathogenesis has been hindered due to slow growth of infectious strains, poor transformability, and a paucity of genetic tools. As a result of second generation sequencing technologies, there has been an acceleration of leptospiral genome sequencing efforts in the past decade, which has enabled a concomitant increase in functional genomics analyses of Leptospira pathogenesis. A pathogenomics approach, by coupling of pan-genomic analysis of multiple isolates with sequencing of experimentally attenuated highly pathogenic Leptospira, has resulted in the functional inference of virulence factors. The global Leptospira Genome Project supported by the U.S. National Institute of Allergy and Infectious Diseases to which key scientific contributions have been made from the international leptospirosis research community has provided a new roadmap for comprehensive studies of Leptospira and leptospirosis well into the future. This review describes functional genomics approaches to apply the data generated by the Leptospira Genome Project towards deepening our knowledge of virulence factors of Leptospira using the emerging discipline of pathogenomics.
    Pathogens (Basel, Switzerland). 01/2014; 3(2):280-308.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptospirosis is arguably the most widespread zoonosis; it is also a major cause of economic loss in production animals worldwide. At the level of the host animal or human, the progression of infection and the onset of disease are well documented. However, the mechanisms of pathogenesis at the cellular and molecular level remain poorly understood, mainly as a result of the lack of modern genetic tools for mutagenesis of pathogenic Leptospira spp. The recent development of transposon mutagenesis and the construction of a very small number of directed leptospiral mutants have identified a limited number of essential virulence factors. Perhaps surprisingly, many leptospiral proteins with characteristics consistent with a role in virulence have been shown to not be required for virulence in animal models, consistent with a high degree of functional redundancy in pathogenic Leptospira. A large number of putative adhesins has been reported in Leptospira, which interact with a range of host tissue components; however, almost none of these have been genetically confirmed as having an essential role in pathogenesis.
    Veterinary microbiology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptospirosis, an emerging zoonotic disease with worldwide distribution, is caused by spirochetes belonging to the genus Leptospira. More than 500,000 cases of severe leptospirosis are reported annually, with >10% of these being fatal. Leptospires can survive for weeks in suitably moist conditions before encountering a new host. Reservoir hosts, typically rodents, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. In humans, leptospires can cause a variety of clinical manifestations, ranging from asymptomatic or mild fever to severe icteric (Weil's) disease and pulmonary haemorrhage. Currently, little is known about how Leptospira persist within a reservoir host. Prior in vitro studies have suggested that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. However, no study has examined gene expression by leptospires within a mammalian host-adapted state. To obtain a more faithful representation of how leptospires respond to host-derived signals, we used RNA-Seq to compare the transcriptome of L. interrogans cultivated within dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats with that of organisms grown in vitro. In addition to determining the relative expression levels of "core" housekeeping genes under both growth conditions, we identified 166 genes that are differentially-expressed by L. interrogans in vivo. Our analyses highlight physiological aspects of host adaptation by leptospires relating to heme uptake and utilization. We also identified 11 novel non-coding transcripts that are candidate small regulatory RNAs. The DMC model provides a facile system for studying the transcriptional and antigenic changes associated with mammalian host-adaption, selection of targets for mutagenesis, and the identification of previously unrecognized virulence determinants.
    PLoS Pathogens 03/2014; 10(3):e1004004. · 8.14 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
May 21, 2014