Chapter

Atypical Hemolytic-Uremic Syndrome

Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy.
DOI: 10.1056/NEJMra0902814 In book: GeneReviews™, Publisher: University of Washington, Seattle, Editors: Roberta A Pagon, Thomas D Bird, Cynthia R Dolan, Karen Stephens, Margaret P Adam
Source: PubMed

ABSTRACT Hemolytic-uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia, and renal failure caused by platelet thrombi in the microcirculation of the kidney and other organs. Typical (acquired) HUS is triggered by infectious agents such as strains of E. coli (Stx-E. coli) that produce powerful Shiga-like exotoxins, whereas atypical HUS (aHUS) can be genetic, acquired, or idiopathic (of unknown cause). Onset of atypical HUS ranges from prenatal to adulthood. Individuals with genetic atypical HUS frequently experience relapse even after complete recovery following the presenting episode. Sixty percent of genetic aHUS progresses to end-stage renal disease (ESRD).
Atypical HUS is considered genetic when two or more members of the same family are affected by the disease at least six months apart and exposure to a common triggering infectious agent has been excluded, or when a disease-causing mutation(s) is identified in one of the nine genes in which mutations are known to be associated with aHUS, irrespective of familial history. The nine genes are: CFH (encoding complement factor H), accounting for an estimated 30% of aHUS; CD46 (MCP) (encoding membrane cofactor protein) accounting for approximately 12% of aHUS; CFI (encoding complement factor I), accounting for an estimated 5%-10% of aHUS; C3 (encoding the third component of complement C3) accounting for 5% of aHUS; rarely, CFB (encoding complement factor B); and THBD (encoding thrombomodulin) accounting for about 5% of aHUS. Deletions involving CFHR1 and CFHR3 or CFHR1 and CFHR4 account for 5%-15% of aHUS.
Treatment of manifestations: Plasma manipulation (plasma infusion or exchange) to reduce mortality; however, plasma resistance or plasma dependence is possible. Bilateral nephrectomy when extensive renal microvascular thrombosis, refractory hypertension, and signs of hypertensive encephalopathy are not responsive to conventional therapies including plasma manipulation. Surveillance: Serum concentration of hemoglobin, platelet count, and serum concentrations of creatinine, LDH, C3, C4, and haptoglobin: (1) every month in the first year after an aHUS episode, then every three to six months in the following years, particularly for those with normal renal function or chronic renal insufficiency as they are at risk for relapse; and (2) in mutation-positive relatives following exposure to potential triggering events. Agents/circumstances to avoid: Those with known aHUS should avoid if possible pregnancy and the following drugs that are known precipitants of aHUS: anti-cancer molecules (including mitomycin C, cisplatin, daunorubimicin, cytosine arabinoside); immunotherapeutic agents (including cyclosporin and tacrolimus); and antiplatelet agents (including ticlopidine and clopidogrel). Plasma therapy is contraindicated in those with aHUS induced by Streptococcus pneumoniae because antibodies in the plasma of adults may exacerbate the disease. Evaluation of relatives at risk: While it is appropriate to offer molecular genetic testing to at-risk family members of persons in whom disease-associated mutations have been identified, predictive testing based on a predisposing factor (as opposed to a causative mutation) is problematic as it is one of only several risk factors required for disease causation. Other: Live-related renal transplantation for individuals with aHUS should also be avoided in that disease onset can be precipitated in the healthy donor relative. Evidence suggests that kidney graft outcome is favorable in those with CD46 mutations but not in those with CFH, CFI, or CFB mutations; however, simultaneous kidney and liver transplantation in young children with aHUS and CFH mutations may correct the genetic defect and prevent disease recurrence.
Predisposition to atypical HUS (aHUS) is inherited in an autosomal recessive or autosomal dominant manner with incomplete penetrance. Rarely digenic inheritance and uniparental isodisomy are observed. Autosomal recessive inheritance: Heterozygotes (carriers) are usually asymptomatic; however, rarely carriers have developed aHUS in adulthood. At conception, each sib of an individual with autosomal recessive aHUS has a 25% chance of inheriting two disease-causing mutations, a 50% chance of inheriting one mutation and being a carrier, and a 25% chance of inheriting neither mutation. Autosomal dominant inheritance: Some individuals diagnosed with autosomal dominant aHUS have an affected parent or an affected close relative, but in the majority the family history is negative because of reduced penetrance of the disease-causing mutation in an asymptomatic parent, early death of a parent, late onset in a parent (or close relative), or a de novo mutation in the proband. Each child of an individual with autosomal dominant aHUS has a 50% chance of inheriting the mutation. In both genetic types, clinical severity and disease phenotype often differ among individuals with the same mutations; thus, age of onset and/or disease progression and outcome cannot be predicted. Prenatal diagnosis for pregnancies at increased risk is possible if the disease-associated mutation(s) has (have) been identified in the family.

0 Followers
 · 
185 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shiga toxin 2 (Stx2) is believed to be a major virulence factor of enterohemorrhagic Escherichia coli (EHEC) contributing to hemolytic uremic syndrome (HUS). The complement system has recently been found to be involved in the pathogenesis of EHEC-associated HUS. Stx2 was shown to activate complement via the alternative pathway, to bind factor H (FH) at short consensus repeats (SCRs) 6-8 and 18-20 and to delay and reduce FH cofactor activity on the cell surface. We now show that complement factor H-related protein 1 (FHR-1) and factor H-like protein 1 (FHL-1), proteins of the FH protein family that show amino acid sequence and regulatory function similarities with FH, also bind to Stx2. The FHR-1 binding site for Stx2 was located at SCRs 3-5 and the binding capacity of FHR-1*A allotype was higher than that of FHR-1*B. FHR-1 and FHL-1 competed with FH for Stx2 binding, and in the case of FHR-1 this competition resulted in a reduction of FH cofactor activity. FHL-1 retained its cofactor activity in the fluid phase when bound to Stx2. In conclusion, multiple interactions of key complement inhibitors FH, FHR-1 and FHL-1 with Stx2 corroborate our hypothesis of a direct role of complement in EHEC-associated HUS.
    Molecular Immunology 12/2013; 58(1):77-84. DOI:10.1016/j.molimm.2013.11.009 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atypical hemolytic and uremic syndrome (aHUS) is associated with a high rate of recurrence and poor outcomes after kidney transplantation. Fortunately, recent advances in the understanding of the pathogenesis of aHUS have permitted an individualized risk assessment of post-transplant recurrence. Acquired or inherited dysregulation of the alternative complement pathway, thought to be the driving force of the disease, is identified in most aHUS patients. Notably, depending on the mutations involved, the risk of recurrence greatly varies, highlighting the importance of undertaking etiological investigations prior to kidney transplantation. In those with moderate to high risk of recurrence, the use of a prophylactic therapy, consisting in either plasmapheresis or eculizumab therapies, represents a major stride forward in the prevention of aHUS recurrence after kidney transplantation. In those who experience aHUS recurrence, a growing number of observations suggest that eculizumab therapy outperforms curative plasma therapy. The optimal duration of both prophylactic and curative therapies remains an important, yet unaddressed, issue. In this respect, the kidney transplant recipients, continuously exposed to endothelial-insulting factors, referred here as to triggers, might have a sustained high risk of recurrence. A global therapeutic approach should thus attempt to reduce exposure to these triggers.
    Transplantation reviews (Orlando, Fla.) 08/2013; DOI:10.1016/j.trre.2013.07.003 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Factor H related proteins comprise a group of five plasma proteins: CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5, and each member of this group binds to the central complement component C3b. Mutations, genetic deletions, duplications or rearrangements in the individual CFHR genes are associated with a number of diseases including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathies (C3 glomerulonephritis (C3GN), dense deposit disease (DDD) and CFHR5 nephropathy), IgA nephropathy, age related macular degeneration (AMD) and systemic lupus erythematosus (SLE). Although complement regulatory functions were attributed to most of the members of the CFHR protein family, the precise role of each CFHR protein in complement activation and the exact contribution to disease pathology is still unclear. Recent publications show that CFHR proteins form homo- as well as heterodimers. Genetic abnormalities within the CFHR gene locus can result in hybrid proteins with affected dimerization or recognition domains which cause defective functions. Here we summarize the recent data about CFHR genes and proteins in order to better understand the role of CFHR proteins in complement activation and in complement associated diseases.
    Molecular Immunology 07/2013; 56(3). DOI:10.1016/j.molimm.2013.06.001 · 3.00 Impact Factor

Preview (2 Sources)

Download
2 Downloads
Available from