Article

High level functional expression of the ABCG2 multidrug transporter in undifferentiated human embryonic stem cells

Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University and National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
Biochimica et Biophysica Acta (Impact Factor: 4.66). 12/2008; 1778(12):2700-2709. DOI: 10.1016/j.bbamem.2008.08.010
Source: PubMed

ABSTRACT Expression of multidrug resistance ABC transporters has been suggested as a functional marker and chemoprotective element in early human progenitor cell types. In this study we examined the expression and function of the key multidrug-ABC transporters, ABCB1, ABCC1 and ABCG2 in two human embryonic stem (HuES) cell lines. We detected a high level ABCG2 expression in the undifferentiated HuES cells, while the expression of this protein significantly decreased during early cell differentiation. ABCG2 in HuES cells provided protection against mitoxantrone toxicity, with a drug-stimulated overexpression of the transporter. No significant expression of ABCB1/ABCC1 was found either in the undifferentiated or partially differentiated HuES cells. Examination of the ABCG2 mRNA in HuES cells indicated the use of selected promoter sites and a truncated 3′ untranslated region, suggesting a functionally distinct regulation of this transporter in undifferentiated stem cells. The selective expression of the ABCG2 multidrug transporter indicates that ABCG2 can be applied as a marker for undifferentiated HuES cells. Moreover, protection of embryonic stem cells against xenobiotics and endobiotics may depend on ABCG2 expression and regulation.

Full-text

Available from: Tamás I Orbán, May 28, 2015
0 Followers
 · 
96 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since cancer stem cells exhibit embryonic-like self-renewal characteristics and malignant behavior, including drug resistance and metastasis, they may be the origin of tumorigenesis and cancer recurrence. Cancer cell stemness is also highly relevant to cancer in hypoxic environments. In our study, we used cobalt dichloride (CoCl2) to create a hypoxic environment for lung adenocarcinoma A549 cells and the cisplatine-resistant cell line A549/DDP. The cancer stem-like CD166 positive population and the cells' stemness were detected by flowcytometry and quantitative real-time PCR after separation using magnetic antibodies. Drug resistance to cisplatine, docetaxel and pemetrexed was also measured. Finally, a tissue array was used to analyze the relationship between hypoxia-induced stemness and overall survival after radical surgery. Data showed that chemical-induced hypoxia changed cell stemness by enhancing stem cell transcription factors and markers of chemotherapeutic drug resistance. The CD166-positive cancer stem cell-like population showed greater drug resistance than the CD166-negative cells. Tissue array studies also suggested a poorer prognosis for patients whose tissue expressed higher CD166 levels. Our findings indicate that chemical hypoxia may augment cancer cell stemness and drug resistance in CD166-positive stem cells. Therefore, targeting the stem-like cell population, especially CD166-positive cells, may represent a novel therapeutic strategy to treat lung cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Lung cancer (Amsterdam, Netherlands) 12/2014; 87(2). DOI:10.1016/j.lungcan.2014.11.017 · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The major reservoir of human multipotent mesenchymal stem/stromal cells (MSC) is the bone marrow (BM) with the capability to control hematopoietic stem cell (HSC) development. The regenerative potential of MSC is associated with enhanced endogenous repair and healing mechanisms that modulate inflammatory responses. Our previous results revealed that MSC-like (MSCl) cells derived from pluripotent human embryonic stem cells resemble BM-derived MSC in morphology, phenotype and differentiating potential. Here we investigated the effects of MSCl cells on the phenotype and functions of dendritic cells (DC). To assess how anti-viral immune responses could be regulated by intracellular pattern recognition receptors (PRR) of DC in the presence of MSCl cells we activated DC with the specific ligands of retinoic acid-inducible gene I (RIG-I) helicases and found that activated DC co-cultured with MSCl cells exhibited reduced expression of CD1a and CD83 cell surface molecules serving as phenotypic indicators of DC differentiation and activation, respectively. However, RIG-I-mediated stimulation of DC via specific ligands in the presence of MSCl cells resulted in significantly higher expression of the co-stimulatory molecules CD80 and CD86 than in the presence of BM-MSC. In line with these results the concentration of IL-6, IL-10 and CXCL8 was increased in the supernatant of the DC-MSCl co-cultures, while the secretion of TNF-α, CXCL10, IL-12 and IFNγ was reduced. Furthermore, the concerted action of mechanisms involved in the regulation of DC migration resulted in the blockade of cell migration indicating altered DC functionality mediated by MSCl cell-derived signals and mechanisms resulting in a suppressive microenvironment.
    Stem cells and development 03/2015; DOI:10.1089/scd.2014.0509 · 4.20 Impact Factor