Magnetic Resonance Metabolic Imaging of Glioma

Department of Neurosurgery, Hôpital de la Timone, APHM, 13005 Marseille, France.
Science translational medicine (Impact Factor: 15.84). 01/2012; 4(116):116ps1. DOI: 10.1126/scitranslmed.3003591
Source: PubMed


2-Hydroxyglutarate (2-HG) is a potential oncometabolite involved in gliomagenesis that has been identified as an aberrant product of isocitrate dehydrogenase (IDH)-mutated glial tumors. Recent genomics studies have shown that heterozygous mutation of IDH genes 1 and 2, present in up to 86% of grade II gliomas, is associated with a favorable outcome. Two reports in this issue describe both ex vivo and in vivo methods that could noninvasively detect the presence of 2-HG in glioma patients. This approach could have valuable implications for diagnosis, prognosis, and stratification of brain tumors, as well as for monitoring of treatment in glioma patients.

6 Reads
  • Source
    • "As mentioned earlier, such findings indicate that stereotactic biopsy and tumor profiling may enable differential clinical management of H3F3A K27M-mutated and wild-type DIPG, which recent studies have shown are markedly distinct at the molecular level [11,69,72]. Additionally, in the context of pathologic biomarker development, recent advances in magnetic resonance detection offer valuable non-invasive approaches; this is exemplified in the context of 2-hydroxyglutarate detection in IDH1-mutant glioma patients by novel magnetic resonance and spectroscopic techniques [79-81]. Taken together, further genomic characterization and modeling of individual epigenetic subtypes of GBM and HGG and subsequent characterization of their clinical correlates may form the basis for stratification of future clinical trials. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain tumors are the leading cause of cancer-related death in children. High-grade astrocytomas (HGAs), in particular, are lethal in children across all ages. Integrative genome-wide analyses of the tumor's genome, transcriptome and epigenome, using next-generation sequencing technologies and genome-wide DNA methylation arrays, have provided valuable breakthroughs in our understanding of the pathogenesis of HGAs across all ages. Recent profiling studies have provided insight into the epigenetic nature of gliomas in young adults and HGAs in children, particularly with the identification of recurrent gain-of-function driver mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1/2) and the epigenetic influence of their oncometabolite 2-hydroxyglutarate, as well as mutations in the histone 3 variant 3 gene (H3F3A) and loss-of-function mutations in the histone 3 lysine 36 trimethyltransferase gene (SETD2). Mutations in H3F3A result in amino acid substitutions at residues thought to directly (K27M) or indirectly (G34R/V) affect histone post-translational modifications, suggesting they have the capacity to affect the epigenome in a profound manner. Here, we review recent genomic studies, and discuss evidence supporting the molecular characterization of pediatric HGAs to complement traditional approaches, such as histology of resected tumors. We also describe newly identified molecular mechanisms and discuss putative therapeutic approaches for HGAs specific to pediatrics, highlighting the necessity for the evolution of HGA disease management approaches.
    Genome Medicine 07/2013; 5(7):66. DOI:10.1186/gm470 · 5.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective The isocitrate dehydrogenase 1 (IDH1) R132H mutation is the most common mutation in World Health Organization (WHO) grade II gliomas, reported to be expressed in 70-80%, but only 5-10% of high grade gliomas. Low grade tumors, especially the protoplasmic subtype, have the highest incidence of tumor associated epilepsy (TAE). The IDH1 mutation leads to the accumulation of 2-hydroxyglutarate (2HG), a metabolite that bears a close structural similarity to glutamate, an excitatory neurotransmitter that has been implicated in the pathogenesis of TAE. We hypothesized that expression of mutated IDH1 may play a role in the pathogenesis of TAE in low grade gliomas. Methods Thirty consecutive patients with WHO grade II gliomas were analyzed for the presence of the IDH1-R132H mutation using immunohistochemistry. The expression of IDH1 mutation was semiquantified using open-source biologic-imaging analysis software. ResultsThe percentage of cells positive for the IDH1-R132H mutation was found to be higher in patients with TAE compared to those without TAE (median and interquartile range (IQR) 25.3% [8.6-53.5] vs. 5.2% [0.6-13.4], p=0.03). In addition, we found a significantly higher median IDH1 mutation expression level in the protoplasmic subtype of low grade glioma (52.2% [IQR 19.9-58.6] vs. 13.8% [IQR 3.9-29.4], p=0.04). SignificanceIncreased expression of the IDH1-R132H mutation is associated with seizures in low grade gliomas and also with the protoplasmic subtype. This supports the hypothesis that this mutation may play a role in the pathogenesis of both TAE and low grade gliomas.
    Epilepsia 06/2014; 55(9). DOI:10.1111/epi.12662 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-grade gliomas (HGGs) constitute ∼15% of all primary brain tumors in children and adolescents. Routine histopathological diagnosis is based on tissue obtained from biopsy or, preferably, from the resected tumor itself. The majority of pediatric HGGs are clinically and biologically distinct from histologically similar adult malignant gliomas; these differences may explain the disparate responses to therapy and clinical outcomes when comparing children and adults with HGG. The recently proposed integrated genomic classification identifies 6 distinct biological subgroups of glioblastoma (GBM) throughout the age spectrum. Driver mutations in genes affecting histone H3.3 (K27M and G34R/V) coupled with mutations involving specific proteins (TP53, ATRX, DAXX, SETD2, ACVR1, FGFR1, NTRK) induce defects in chromatin remodeling and may play a central role in the genesis of many pediatric HGGs. Current clinical practice in pediatric HGGs includes surgical resection followed by radiation therapy (in children aged > 3 years) with concurrent and adjuvant chemotherapy with temozolomide. However, these multimodality treatment strategies have had a minimal impact on improving survival. Ongoing clinical trials are investigating new molecular targets, chemoradiation sensitization strategies, and immunotherapy. Future clinical trials of pediatric HGG will incorporate the distinction between GBM molecular subgroups and stratify patients using group-specific biomarkers.
    12/2014; 1(4):145-157. DOI:10.1093/nop/npu022

Similar Publications