Plac8-Dependent and Inducible NO Synthase-Dependent Mechanisms Clear Chlamydia muridarum Infections from the Genital Tract

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
The Journal of Immunology (Impact Factor: 4.92). 02/2012; 188(4):1896-904. DOI: 10.4049/jimmunol.1102764
Source: PubMed


Chlamydia trachomatis urogenital serovars replicate predominantly in genital tract epithelium. This tissue tropism poses a unique challenge for host defense and vaccine development. Studies utilizing the Chlamydia muridarum mouse model have shown that CD4 T cells are critical for clearing genital tract infections. In vitro studies have shown that CD4 T cells terminate infection by upregulating epithelial inducible NO synthase (iNOS) transcription and NO production. However, this mechanism is not critical, as iNOS-deficient mice clear infections normally. We recently showed that a subset of Chlamydia-specific CD4 T cell clones could terminate replication in epithelial cells using an iNOS-independent mechanism requiring T cell degranulation. We advance that work using microarrays to compare iNOS-dependent and iNOS-independent CD4 T cell clones. Plac8 was differentially expressed by clones having the iNOS-independent mechanism. Plac8-deficient mice had delayed clearance of infection, and Plac8-deficient mice treated with the iNOS inhibitor N-monomethyl-l-arginine were largely unable to resolve genital tract infections over 8 wk. These results demonstrate that there are two independent and redundant T cell mechanisms for clearing C. muridarum genital tract infections: one dependent on iNOS, and the other dependent on Plac8. Although T cell subsets are routinely defined by cytokine profiles, there may be important subdivisions by effector function, in this case CD4(Plac8).

Download full-text


Available from: James E Slaven, Jan 29, 2015
  • Source
    • "Had the Plac8-dependent mechanism been dependent on perforin, we would have expected MLA-treated perforin knockout mice to shed Chlamydia throughout the 8th week of the experiment; they did not. The delayed clearance in untreated or MLA-treated perforin knockout mice compared to wild type mice is unlikely to represent a compromised Plac8-dependent clearance mechanism that is strongly associated with the in vitro degranulation-dependent termination mechanism [13], [16]. Perforin’s contribution to bacterial clearance is not likely occurring through enhancing CD4 T cell termination of Chlamydia replication in epithelial cells as it does not appear to relevant to the Plac8-dependent mechanism and is detrimental to the iNOS-dependent mechanism. "
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4 T cells are critical for clearing experimental Chlamydia muridarum genital tract infections. Two independent in vitro CD4 T cell mechanisms have been identified for terminating Chlamydia replication in epithelial cells. One mechanism, requiring IFN-γ and T cell-epithelial cell contact, terminates infection by triggering epithelial production of nitric oxide to chlamydiacidal levels; the second is dependent on T cell degranulation. We recently demonstrated that there are two independent in vivo clearance mechanisms singly sufficient for clearing genital tract infections within six weeks; one dependent on iNOS, the other on Plac8. Redundant genital tract clearance mechanisms bring into question negative results in single-gene knockout mice. Two groups have shown that perforin-knockout mice were not compromised in their ability to clear C. muridarum genital tract infections. Because cell lysis would be detrimental to epithelial nitric oxide production we hypothesized that perforin was not critical for iNOS-dependent clearance, but posited that perforin could play a role in Plac8-dependent clearance. We tested whether the Plac8-dependent clearance was perforin-dependent by pharmacologically inhibiting iNOS in perforin-knockout mice. In vitro we found that perforin was detrimental to iNOS-dependent CD4 T cell termination of Chlamydia replication in epithelial cells. In vivo, unexpectedly, clearance in perforin knockout mice was delayed to the end of week 7 regardless of iNOS status. The discordant in vitro/in vivo results suggest that the perforin's contribution to bacterial clearance in vivo is not though enhancing CD4 T cell termination of Chlamydia replication in epithelial cells, but likely via a mechanism independent of T cell-epithelial cell interactions.
    PLoS ONE 07/2013; 8(5):e63340. DOI:10.1371/journal.pone.0063340 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targets for cancer therapy are conventionally selected by identification of molecules acting downstream of established tumour suppressors and oncoproteins, such as p53, c-Myc and Ras. However, the forward genetics approach provides an alternative, conceptually distinct, strategy for identifying target molecules de novo. This approach, which uses unbiased selection protocols relying directly on the effects of the genes themselves on cell fate, has the potential to identify novel cancer targets which have not been highlighted by conventional approaches. PLAC8, a small cysteine-rich protein with little homology to other proteins, has been identified by both these strategies. Here we confirm that PLAC8 overexpression protects some cancer cell lines from apoptosis, but we also demonstrate for the first time that, in other cell lines, the effect of PLAC8 overexpression is reversed, and, in this context, PLAC8 induces apoptosis. In both cases siRNA-mediated down-regulation of PLAC8 confirms that the activity of endogenously expressed PLAC8 is consistent with that shown by exogenous PLAC8. The striking reversal of the effects of PLAC8 in different cell types is not readily explained by the level of PLAC8 expressed within the cells, by the differential expression of PLAC8 splice variants observed, or by the p53 status of the host cells. This intriguing contrast in the effects of PLAC8 on cell fate in different cellular contexts presents attractive possibilities for the development of novel therapies for cancers, such as pancreatic cancers, where PLAC8 has been shown to be overexpressed.
    Current cancer drug targets 08/2012; 13(1). DOI:10.2174/156800913804486584 · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome scans using amplified fragment length polymorphism (AFLP) markers became popular in nonmodel species within the last 10 years, but few studies have tried to characterize the anonymous outliers identified. This study follows on from an AFLP genome scan in the black rat (Rattus rattus), the reservoir of plague (Yersinia pestis infection) in Madagascar. We successfully sequenced 17 of the 22 markers previously shown to be potentially affected by plague-mediated selection and associated with a plague resistance phenotype. Searching these sequences in the genome of the closely related species Rattus norvegicus assigned them to 14 genomic regions, revealing a random distribution of outliers in the genome (no clustering). We compared these results with those of an in silico AFLP study of the R. norvegicus genome, which showed that outlier sequences could not have been inferred by this method in R. rattus (only four of the 15 sequences were predicted). However, in silico analysis allowed the prediction of AFLP markers distribution and the estimation of homoplasy rates, confirming its potential utility for designing AFLP studies in nonmodel species. The 14 genomic regions surrounding AFLP outliers (less than 300 kb from the marker) contained 75 genes encoding proteins of known function, including nine involved in immune function and pathogen defence. We identified the two interleukin 1 genes (Il1a and Il1b) that share homology with an antigen of Y. pestis, as the best candidates for genes subject to plague-mediated natural selection. At least six other genes known to be involved in proinflammatory pathways may also be affected by plague-mediated selection.
    Molecular Ecology 12/2012; 22(2). DOI:10.1111/mec.12115 · 6.49 Impact Factor
Show more