Chapter

Ionic Liquids Gelation with Polymeric Materials: The Ion Jelly Approach

In book: Applications of Ionic Liquids in Science and Technology
Source: InTech
0 Bookmarks
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionic liquids containing the nitrile and vinyl functional groups attached to imidazolium cations combined with various anions, e.g., iodide, bis[(trifluoromethyl)sulfonyl]imide ([TFSI]-), or dicyanamide ([N(CN)2]-), have been prepared and characterized. These ionic liquids have been successfully used as electrolytes for dye-sensitized solar cells based on nanocrystalline TiO2 with the amphiphilic ruthenium sensitizer [ruthenium (4,4'-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2'-bipyridine)][NCS]2 (coded K-19). The iodide salt was used in 3-methoxypropionitrile-based electrolytes, and the performances of both types of devices were evaluated on the basis of their photocurrent density-voltage characteristics and dark current measurements, demonstrating that the functional groups do not exert a detrimental effect on the performance. The solid-state structure of the nitrile-functionalized salt [C1C3CN(im)]I has also been established by single-crystal X-ray diffraction, revealing extensive hydrogen bonding between the cation protons and the iodide.
    Inorganic Chemistry 03/2006; 45(4):1585-90. · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucose oxidase (GOD) immobilized in nanogold particles (NAs)-N,N-dimethylformamide (DMF) composite film on glassy carbon (GC) electrode exhibits a pair of quasi-reversible and unstable peaks due to the redox of flavin adenine dinucleotide (FAD) of GOD. When ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) or trihexyltetradecylphosphorium bis (trifluoromethylsulfony) (P666,14 NTf2) is introduced in the film, the peaks become small. But ILs 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF6) make the peaks large and stable. In different composite films the formal potential (E0′) of GOD is different. UV–vis spectra show that the GOD dispersed in these films almost retains its native structure and there are weak interactions between ILs and GOD. Electrochemical impedance spectra display that NAs can promote the electron transfer between FAD and GC electrode; and ILs can affect the electron transfer through interacting with GOD. The thermal stability of GOD entrapped in NAs-DMF-ILs composite films is also influenced by ILs, and it follows such order as: in NAs-DMF-OMIMPF6 > in NAs-DMF-BMIMPF6 ≈ in NAs-DMF-BMIMBF4 > in NAs-DMF. In addition, GOD immobilized in NAs-DMF-OMIMPF6 and NAs-DMF-BMIMPF6 films shows good catalytic activity to the oxidation of glucose. The Imax of H2O2 and the apparent Km (Michaelis–Menten constant) for the enzymatic reaction are calculated.
    Electrochimica Acta. 06/2007; 52(20):6178-6185.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current interest in ionic liquids (ILs) is motivated by some unique properties, such as negligible vapour pressure, thermal stability and non-flammability, combined with high ionic conductivity and wide electrochemical stability window. However, for material applications, there is a challenging need for immobilizing ILs in solid devices, while keeping their specific properties. In this critical review, ionogels are presented as a new class of hybrid materials, in which the properties of the IL are hybridized with those of another component, which may be organic (low molecular weight gelator, (bio)polymer), inorganic (e.g. carbon nanotubes, silica etc.) or hybrid organic-inorganic (e.g. polymer and inorganic fillers). Actually, ILs act as structuring media during the formation of inorganic ionogels, their intrinsic organization and physicochemical properties influencing the building of the solid host network. Conversely, some effects of confinement can modify some properties of the guest IL, even though liquid-like dynamics and ion mobility are preserved. Ionogels, which keep the main properties of ILs except outflow, while allowing easy shaping, considerably enlarge the array of applications of ILs. Thus, they form a promising family of solid electrolyte membranes, which gives access to all-solid devices, a topical industrial challenge in domains such as lithium batteries, fuel cells and dye-sensitized solar cells. Replacing conventional media, organic solvents in lithium batteries or water in proton-exchange-membrane fuel cells (PEMFC), by low-vapour-pressure and non flammable ILs presents major advantages such as improved safety and a higher operating temperature range. Implementation of ILs in separation techniques, where they benefit from huge advantages as well, relies again on the development of supported IL membranes such as ionogels. Moreover, functionalization of ionogels can be achieved both by incorporation of organic functions in the solid matrix, and by encapsulation of molecular species (from metal complexes to enzymes) in the immobilized IL phase, which opens new routes for designing advanced materials, especially (bio)catalytic membranes, sensors and drug release systems (194 references).
    Chemical Society Reviews 02/2011; 40(2):907-25. · 24.89 Impact Factor

Full-text (2 Sources)

View
46 Downloads
Available from
May 17, 2014