Article

Ethanol extract of Graptopetalum paraguayense upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway.

Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
The American Journal of Chinese Medicine (Impact Factor: 2.28). 01/2012; 40(2):357-72. DOI: 10.1142/S0192415X12500280
Source: PubMed

ABSTRACT Human serum paraoxonase 1 (PON1), a calcium-dependent ester hydrolase, protects against the oxidative modification of low-density lipoprotein (LDL) and is a major anti-atherosclerotic component of high-density lipoprotein (HDL). Graptopetalum paraguayense, a folk herbal medicine commonly used in Taiwan, has antioxidative, anti-inflammatory, anti-hypertensive, and anti-atherogenic properties. The effects of G. paraguayense on the activity and/or expression of PON1 were examined using various extracts of the plant; extracts were made in water (GPWE), 50% ethanol (GP50E), and 95% ethanol (GP95E). Of these extracts, GP50E was found to be the most effective at increasing the function and expression of PON1 in a human hepatoma HepG2 cell line. Data from electrophoretic mobility shift assays and promoter-reporter luciferase analyses demonstrated that the DNA binding activity and transactivation ability of NF-κB were enhanced by GP50E. Treatment with NF-κB inhibitors, pyrrolidine dithiocarbamate, and BAY 11-7082 significantly attenuated GP50E-induced PON1 production and NF-κB transactivation activity. In addition, GP50E increased the levels of phosphorylated protein kinase B (PKB/AKT). Pharmacological inhibition of AKT by LY294002 effectively suppressed NF-κB activation and PON1 gene expression, suggesting that AKT was an upstream regulator of GP50E-mediated biological events. Overall, the results show that GP50E up-regulated PON1 gene expression via an AKT/NF-κB-dependent signaling pathway in human hepatoma HepG2 cells. This observation led to the conclusion that the anti-atherogenic characteristics of G. paraguayense are modulated, at least in part, via the up-regulation of hepatocyte PON1 gene expression.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was aimed to investigate the effects of water extracts of Graptopetalum paraguayense (WGP, 4 g/d) on blood pressure, blood glucose level, and lipid profiles in subjects with metabolic syndrome (MS). Participants with MS (n = 54) were randomly assigned to the placebo (n = 28) and WGP groups (n = 26), and the intervention was administered for 12 weeks. Systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting glucose (FG), lipid profiles (total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein (HDL-C)), and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx)) were measured. Forty-two subjects completed the study (placebo, n = 19; WGP, n = 23). FG, SBP, and LDL-C levels were significantly lower and HDL-C level and antioxidant enzymes activities (CAT and SOD) were significantly higher after WGP supplementation. Blood pressure, FG, and lipid profiles were significantly correlated with antioxidant enzymes activities after supplementation (P < 0.05). The present study demonstrated a significant reduction in blood pressure, blood glucose, and lipid profiles and an increase in antioxidant enzymes activities in subjects with MS after WGP supplementation. Taken together, the antioxidative capacity of WGP might exert a beneficial effect on MS. This trial is registered with ClinicalTrials.gov NCT01463748.
    BioMed research international. 01/2013; 2013:809234.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNFα and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.
    Biochemical and Biophysical Research Communications 06/2013; · 2.28 Impact Factor