Cancer Chemoprevention by Carotenoids

Tohkai Cytopathology Institute, Cancer Research and Prevention-TCI-CaRP, 5-1-2 Minami-Uzura, Gifu 500-8285, Japan.
Molecules (Impact Factor: 2.1). 12/2012; 17(3):3202-42. DOI: 10.3390/molecules17033202
Source: PubMed

ABSTRACT Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The identification of the spectral information of carotenoid neutral radicals is essential for studying their reactivities towards O2 and thereby evaluating their role in the antioxidant-prooxidant properties of the corresponding carotenoid. Recently, it was reported that β-carotene neutral radical (β-CAR) has an absorption maximum at 750nm. This contradicts the results of many reports that show carotenoid neutral radicals (CAR) absorb in the same or near to the spectral region as their parent carotenoids. In this manuscript, the influence of pH on the decay of β-carotene radical cation (β-CAR-H(+)), generated in an aqueous solution of 2% Triton X-100 (TX-100), was investigated, employing laser flash photolysis (LFP) coupled with kinetic absorption spectroscopy, to identify the absorption bands of the β-carotene neutral radicals. By increasing the pH value of the solution, the decay of β-CAR-H(+) is enhanced and this enhancement is not associated with the formation of any positive absorption bands over the range 550-900nm. By comparing these results with the literature, it can be concluded that β-carotene neutral radicals most probably absorb within the same spectral range as that of β-carotene. The reaction pathways of the reaction of β-CAR-H(+) with (-)OH have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
    Journal of photochemistry and photobiology. B, Biology 05/2015; 146:68-73. DOI:10.1016/j.jphotobiol.2015.02.026 · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.
    Analytica Chimica Acta 04/2015; DOI:10.1016/j.aca.2015.03.051 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.
    Nutrition and Cancer 03/2015; 67(4):1-11. DOI:10.1080/01635581.2015.1017054 · 2.47 Impact Factor

Full-text (3 Sources)

Available from
Jun 5, 2014