Novel mutator mutants of E. coli nrdAB ribonucleotide reductase: insight into allosteric regulation and control of mutation rates.

Laboratory of Molecular Genetics, National Institute of Environmental and Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
DNA repair (Impact Factor: 3.36). 03/2012; 11(5):480-7. DOI: 10.1016/j.dnarep.2012.02.001
Source: PubMed

ABSTRACT Ribonucleotide reductase (RNR) is the enzyme critically responsible for the production of the 5'-deoxynucleoside-triphosphates (dNTPs), the direct precursors for DNA synthesis. The dNTP levels are tightly controlled to permit high efficiency and fidelity of DNA synthesis. Much of this control occurs at the level of the RNR by feedback processes, but a detailed understanding of these mechanisms is still lacking. Using a genetic approach in the bacterium Escherichia coli, a paradigm for the class Ia RNRs, we isolated 23 novel RNR mutants displaying elevated mutation rates along with altered dNTP levels. The responsible amino-acid substitutions in RNR reside in three different regions: (i) the (d)ATP-binding activity domain, (ii) a novel region in the small subunit adjacent to the activity domain, and (iii) the dNTP-binding specificity site, several of which are associated with different dNTP pool alterations and different mutational outcomes. These mutants provide new insight into the precise mechanisms by which RNR is regulated and how dNTP pool disturbances resulting from defects in RNR can lead to increased mutation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Starvation of cells for the DNA building block dTTP is strikingly lethal (thymineless death, TLD), and this effect is observed in all organisms. The phenomenon, discovered some 60 years ago, is widely used to kill cells in anticancer therapies, but many questions regarding the precise underlying mechanisms have remained. Here, we show for the first time that starvation for the DNA precursor dGTP can kill E. coli cells in a manner sharing many features with TLD. dGTP starvation is accomplished by combining up-regulation of a cellular dGTPase with a deficiency of the guanine salvage enzyme guanine-(hypoxanthine)-phosphoribosyltransferase. These cells, when grown in medium without an exogenous purine source like hypoxanthine or adenine, display a specific collapse of the dGTP pool, slow-down of chromosomal replication, the generation of multi-branched nucleoids, induction of the SOS system, and cell death. We conclude that starvation for a single DNA building block is sufficient to bring about cell death.
    PLoS Genetics 05/2014; 10(5):e1004310. · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fidelity with which organisms replicate their chromosomal DNA is of considerable interest. Detailed studies in the bacterium Escherichia coli have indicated that the fidelity of leading- and lagging-strand DNA replication is not the same, based on experiments in which the orientation of certain mutational targets on the chromosome was inverted relative to the movement of the replication fork: different mutation rates for several base-pair substitutions were observed depending on this orientation. While these experiments are indicative of differential replication fidelity in the two strands, a conclusion whether leading or lagging strand is the more accurate depends on knowledge of the primary mispairing error responsible for the base substitutions in question. A broad analysis of in vitro base-pairing preferences of DNA polymerases led us to propose that lagging-strand is the more accurate strand. In the present work, we present more direct in vivo evidence in support of this proposal. We determine the orientation dependence of mutant frequencies in ndk and dcd strains, which carry defined dNTP pool alterations. As these pool alterations lead to predictable effects on the array of possible mispairing errors, they mark the strands in which the observed errors occur. The combined results support the proposed higher accuracy of lagging-strand replication in E. coli.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 11/2013; · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For >35 yr, we have known that the accuracy of DNA replication is controlled in large part by the relative concentrations of the 4 canonical deoxyribonucleoside 5'-triphosphates (dNTPs) at the replisome. Since this field was last reviewed, ∼8 yr ago, there has been increased understanding of the mutagenic pathways as they occur in living cells. At the same time, aspects of deoxyribonucleotide metabolism have been shown to be critically involved in processes as diverse as cell cycle control, protooncogene expression, cellular defense against HIV infection, replication rate control, telomere length control, and mitochondrial function. Evidence supports a relationship between dNTP pools and microsatellite repeat instability. Relationships between dNTP synthesis and breakdown in controlling steady-state pools have become better defined. In addition, new experimental approaches have allowed definitive analysis of mutational pathways induced by dNTP pool abnormalities, both in Escherichia coli and in yeast. Finally, ribonucleoside triphosphate (rNTP) pools have been shown to be critical determinants of DNA replication fidelity. These developments are discussed in this review article.-Mathews, C. K. Deoxyribonucleotides as genetic and metabolic regulators.
    The FASEB Journal 06/2014; · 5.48 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014