Do Carbamazepine, Gabapentin, or Other Anticonvulsants Exert Sufficient Radioprotective Effects to Alter Responses From Trigeminal Neuralgia Radiosurgery?

Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
International journal of radiation oncology, biology, physics (Impact Factor: 4.26). 03/2012; 83(4):e501-6. DOI: 10.1016/j.ijrobp.2012.01.016
Source: PubMed


Laboratory studies have documented radioprotective effects with carbamazepine. We sought to determine whether carbamazepine or other anticonvulsant/neuroleptic drugs would show significant radioprotective effects in patients undergoing high-dose small-volume radiosurgery for trigeminal neuralgia.
We conducted a retrospective review of 200 patients undergoing Gamma Knife (Elekta Instrument AB, Stockholm, Sweden) stereotactic radiosurgery for trigeminal neuralgia between February 1995 and May 2008. We selected patients treated with a maximum dose of 80 Gy with 4-mm diameter collimators, with no previous microvascular decompression, and follow-up ≥6 months (median, 24 months; range, 6-153 months). At the time of radiosurgery, 28 patients were taking no anticonvulsants, 62 only carbamazepine, 35 only gabapentin, 21 carbamazepine plus gabapentin, 17 carbamazepine plus other anticonvulsants, and 9 gabapentin plus other anticonvulsants, and 28 were taking other anticonvulsants or combinations.
Pain improvement developed post-radiosurgery in 187 of 200 patients (93.5%). Initial complete pain relief developed in 84 of 200 patients (42%). Post-radiosurgery trigeminal neuropathy developed in 27 of 200 patients (13.5%). We could not significantly correlate pain improvement or initial complete pain relief with use of carbamazepine, gabapentin, or use of any anticonvulsants/neuroleptic drugs or other factors in univariate or multivariate analysis. Post-radiosurgery numbness/paresthesias correlated with the use of gabapentin (1 of 36 patients with gabapentin vs. 7 of 28 without, p = 0.017). In multivariate analysis, decreasing age, purely typical pain, and use of gabapentin correlated (p = 0.008, p = 0.005, and p = 0.021) with lower risks of developing post-radiosurgery trigeminal neuropathy. New post-radiosurgery numbness/paresthesias developed in 3% (1 of 36), 5% (4 of 81), and 13% (23 of 187) of patients on gabapentin alone, with age ≤70 years, and Type 1 typical trigeminal neuralgia pain compared with 25% (7 of 28), 20% (23 of 114), and 33% (4 of 12) of patients taking no anticonvulsants, age >70 years, and partly atypical Type 2 trigeminal neuralgia, respectively.
The use of carbamazepine or gabapentin at the time of radiosurgery does not decrease the rates of obtaining partial or complete pain relief after radiosurgery, but gabapentin may reduce the risks of developing post-radiosurgery trigeminal neuropathy.

12 Reads
  • Source
    • "However, this drug was ineffective as a radiation protector or mitigator for human cells in culture. In retrospective analysis of patient records in clinical radiotherapy in two categories of patients [Gamma Knife Radiosurgery (Flickinger et al., in press) and external beam radiotherapy for head and neck cancer and non-small cell lung cancer], there was no significant decrease in side effects in patients, who were taking carbamazepine at the time and during radiotherapy (Table 3). However, in clinical studies, patients on carbamazepine for long duration prior to radiotherapy, may have adapted alternative pathways to the radiation response and would not have shown radiation protection or mitigation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development.
    Frontiers in Oncology 01/2011; 1:59. DOI:10.3389/fonc.2011.00059
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbamazepine, a sodium channel blocker and pro-autophagy agent used in the treatment of epilepsy and trigeminal neuralgia, is also an ionizing radiation mitigator and protector. We measured the effect of carbamazepine, compared to other pro-autophagy drugs (i.e. lithium and valproic acid), on irradiation of autophagy incompetent (Atg5(-/-)) and competent (Atg5(+/+)) mouse embryonic fibroblasts, p53(-/-) and p53(+/+) bone marrow stromal cells, and human IB3, KM101, HeLa, and umbilical cord blood cell and in total body-irradiated or orthotopic tumor-bearing mice. Carbamazepine, but not other pro-autophagy drugs, was a radiation protector and mitigator for mouse cell lines, independent of apoptosis, autophagy, p53, antioxidant store depletion, and class I phosphatidylinositol 3-kinase, but was ineffective with human cells. Carbamazepine was effective when delivered 24 hours before or 12 hours after total body irradiation of C57BL/6HNsd mice and did not protect orthotopic Lewis lung tumors. Carbamazepine is a murine radiation protector and mitigator.
    In vivo (Athens, Greece) 05/2012; 26(3):341-54. · 0.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We evaluated the use of colony formation (CFU-GM, BFU-E, and CFU-GEMM) by human umbilical cord blood (CB) hematopoietic progenitor cells for testing novel small molecule ionizing irradiation protectors and mitigators. Each of 11 compounds was added before (protection) or after (mitigation) ionizing irradiation including: GS-nitroxides (JP4-039 and XJB-5-131), the bifunctional sulfoxide MMS-350, the phosphoinositol-3-kinase inhibitor LY294002), TPP-imidazole fatty acid, (TPP-IOA), the nitric oxide synthase inhibitor (MCF-201-89), the p53/mdm2/mdm4 inhibitor (BEB55), methoxamine, isoproterenol, propanolol, and the ATP sensitive potassium channel blocker (glyburide). The drugs XJB-5-131, JP4-039, and MMS-350 were radiation protectors for CFU-GM. JP4-039 was also a radiation protector for CFU-GEMM. The drugs, XJB-5-131, JP4-039, and MMS-350 were radiation mitigators for BFU-E, MMS-350 and JP4-039 were mitigators for CFU-GM, and MMS350 was a mitigator for CFU-GEMM. In contrast, other drugs that were effective in murine assays: TTP-IOA, LY294002, MCF201-89, BEB55, propranolol, isoproterenol, methoxamine, and glyburide showed no significant protection or mitigation in human CB assays. These data support testing of new candidate clinical radiation protectors and mitigators using human CB clonogenic assays early in the drug discovery process, reducing the need for animal experiments.
    Experimental hematology 08/2013; 41(11). DOI:10.1016/j.exphem.2013.08.001 · 2.48 Impact Factor
Show more

Similar Publications