Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China.
Water Research (Impact Factor: 5.32). 03/2012; 46(8):2737-48. DOI: 10.1016/j.watres.2012.02.033
Source: PubMed

ABSTRACT Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aquifer in the Beijing Plain is intensively used as a primary source to meet the growing needs of the various sectors (drinking, agricultural, and industrial purposes). The analysis of groundwater chemical characteristics provides much important information useful in water resources management. To characterize the groundwater chemistry, reveal its spatial and seasonal variability, and determine its quality suitability for domestic and agricultural uses, a total of 200 groundwater samples were collected in June and October 2012 from 100 exploited wells in Daxing District, Beijing, China. All of the indices (39 items) listed in the Quality Standard for Groundwater of China (QSGC) as well as eight additional common parameters were tested and analyzed for all samples, based on which research target was achieved. The seasonal effect on the groundwater chemistry and quality was very slight, whereas the spatial changes were very obvious. The aquifer is mainly dominated by HCO3-Ca·Mg-type water. Of the 39 quality indices listed in QSGC, 28 indices of all of the samples for the 2 months can be classified into the excellent level, whereas the remaining 11 indices can be classified into different levels with the total hardness, NO3, NO2, and Fe being the worst, mainly distributed in the residential and industrial land. According to the general quality index, the groundwater can be classified from good to a relatively poor level, mainly from southeast to northwest. Furthermore, the relatively poor-level area in the northwest expands to the southeast more than in the past years, to which people should pay attention because this reverse spatial distribution relative to the natural law indicates an obvious, anthropogenic impact on the groundwater. In addition, the groundwater in this area is generally very suitable for irrigation year-round. Nevertheless, we recommend performing agricultural water-saving measures for the sustainable development of water and urbanization, groundwater recovery, and ecological safety.
    Environmental Monitoring and Assessment 02/2015; 187(2):4249. DOI:10.1007/s10661-014-4249-9 · 1.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: s u m m a r y The Red River Delta (RRD) is the second largest delta in Vietnam, and its local communities depend on groundwater sources for water supply. A clear understanding of the groundwater hydrogeochemical properties, particularly their changes from the dry to rainy seasons and spatial characteristics, is invaluable and indispensable for the management and protection of this important water resource. In this study, self-organizing maps was systematically applied for the first time to investigate the seasonal and spatial hydrogeochemical characteristics of groundwater in the Pleistocene confined aquifer of the RRD. The hydrogeochemical characteristics clustered by SOM were further examined using the Gibbs Diagrams. The groundwater chemistry dataset used in the analysis comprised eight major dissolved ions (i.e., Ca 2+ , Mg 2+ , Na + , K + , HCO 3 À , Cl À , SO 4 2À , and CO 3 2À) and total dissolved solids that were collected from 52 groundwater monitoring wells within the study area during the dry and rainy seasons. Based on the results, the hydrogeochemical groundwater data of the confined aquifer monitoring wells for the delta were classified into 8 clusters, which revealed three basic representative water types: high salinity (2 clusters), low salinity (3 clusters), and freshwater (3 clusters). The high-salinity types were located in the middle-stream and coastal areas of the RRD, while the low-salinity types were observed near the western and northeastern boundaries of the delta. Cluster changes from the dry to rainy seasons were detected in approximately one-third of the observation wells. The increase in groundwater recharge during the rainy season is the main reason for these changes. Based on Gibbs diagrams, the source of soluble ions in the groundwater of the freshwater types was found to be the weathering of rock-forming minerals , while evaporation and marine activities (leaching from salty paleowater and salt water intrusion) were found to be the main factors affecting the chemistry of the groundwater characterized by the low-and high-salinity types, respectively.
    Journal of Hydrology: New Zealand 01/2015; 522:661-673. DOI:10.1016/j.jhydrol.2015.01.023
  • Source
    Journal of Hydrology 10/2015; · 2.69 Impact Factor


Available from
May 28, 2014