Functional Effects of Nanoparticle Exposure on Calu-3 Airway Epithelial Cells

Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
Cellular Physiology and Biochemistry (Impact Factor: 2.88). 03/2012; 29(1-2):197-212. DOI: 10.1159/000337601
Source: PubMed


High concentrations of manufactured carbon nanoparticles (CNP) are known to cause oxidative stress, inflammatory responses and granuloma formation in respiratory epithelia. To examine the effects of lower, more physiologically relevant concentrations, the human airway epithelial cell line, Calu-3, was used to evaluate potential alterations in transepithelial permeability and cellular function of airway epithelia after exposure to environmentally realistic concentrations of carbon nanoparticles. Three common carbon nanoparticles, fullerenes, single- and multi-wall carbon nanotubes (SWCNT, MWCNT) were used in these experiments. Electrophysiological measurements were performed to assay transepithelial electrical resistance (TEER) and epinephrine-stimulated chloride (Cl(-)) ion secretion of epithelial cell monolayers that had been exposed to nanoparticles for three different times (1 h, 24 h and 48 h) and over a 7 log unit range of concentrations. Fullerenes did not have any effect on the TEER or stimulated ion transport. However, the carbon nanotubes (CNT) significantly decreased TEER and inhibited epinephrine-stimulated Cl(-) secretion. The changes were time dependent and at more chronic exposures caused functional effects which were evident at concentrations substantially lower than have been previously examined. The functional changes manifested in response to physiologically relevant exposures would inhibit mucociliary clearance mechanisms and compromise the barrier function of airway epithelia.

Download full-text


Available from: Frank A Witzmann, Mar 18, 2015
11 Reads
  • Source
    • "These findings are consistent with our previous studies showing that 24 h exposure to the high concentration (10 μg/mL) has little effect on cell function measured as TEER. Conversely the lower concentration of CNTs (100 ng/mL) caused an approximately 40% decrease in TEER [9]. These results are also consistent with studies performed on high resistance renal epithelial cells where both TEER and hormone-stimulated ion transport showed an inverse relationship between CNT concentration and functional effect [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 hexposure to 10 μg/mL and 100 ng/mL of two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study the differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh concentration (10 μg/mL; 0.4 μg/cm(2)) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm(2)) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins in common to both nanotubes occurred within the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The majority of the protein changes represent a decrease in amount suggesting a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon nanotube exposure.
    10/2013; 1(3):219-239. DOI:10.3390/proteomes1030219
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the biological effects of low level, water dispersible, functionalised carbon nanotube (f-CNT) exposure in an in vitro model simulating the digestive tract, cellular protein expression was quantified and compared using label-free quantitative mass spectrometry (LFQMS). Co-cultured cells were exposed to well-characterised SWCNT-COOH, MWCNT-COOH, and MWCNT-PVP. The relative expression of 2,282 unique proteins was compared across the dose groups. 428 proteins were found to be differentially expressed. At the high dose, the extent of differential protein expression was CNT-specific and directly related to CNT colloidal stability. Cells responded to low level MWCNT-PVP exposure with three-fold greater differential expression. Bioinformatic analysis indicated significant and f-CNT-specific effects on relevant molecular and cellular functions and canonical pathways, with little overlap across f-CNT type and in the absence of overt toxicity.
    11/2013; 3(1-2). DOI:10.1504/IJBNN.2013.054508
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calu-3 is a well differentiated human bronchial cell line with the characteristics of the serous cells of airway submucosal glands. The submucosal glands play a major role in mucociliary clearance because they secrete electrolytes that facilitate airway hydration. Given the significance of both long- and short-term β-adrenergic receptor agonists in the treatment of respiratory diseases, it is important to determine the role of these receptors and their ligands in normal physiological function. The current studies were designed to characterize the effect of epinephrine, the naturally occurring β-adrenergic receptor agonist, on electrolyte transport of the airway serous cells. Interestingly epinephrine stimulated two anion secretory channels, the cystic fibrosis transmembrane conductance regulator and a Ca(2+)-activated Cl(-) channel, with the characteristics of TMEM16A, thereby potentially altering mucociliary clearance via multiple channels. Consistent with the dual channel activation, epinephrine treatment resulted in increases in both intracellular cAMP and Ca(2+) Furthermore, the current results extend previous reports indicating that the two anion channels are functionally linked.
    AJP Lung Cellular and Molecular Physiology 04/2014; 306(10). DOI:10.1152/ajplung.00190.2013 · 4.08 Impact Factor
Show more