Reproducibility and intraindividual variation over days in buccal cell DNA methylation of two asthma genes, interferon γ (IFNγ) and inducible nitric oxide synthase (iNOS)

Division of Pulmonary, Allergy and Critical Care of Medicine, PH8E, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA. .
Clinical Epigenetics (Impact Factor: 4.54). 02/2012; 4(1):3. DOI: 10.1186/1868-7083-4-3
Source: PubMed


The biological mechanisms responsible for the onset and exacerbation of asthma symptoms in children may involve the epigenetic regulation of inflammatory genes after environmental exposures. Using buccal cells, we hypothesized that DNA methylation in promoter regions of two asthma genes, inducible nitric oxide synthase (iNOS) and interferon γ (IFNγ), can vary over several days. Repeat buccal samples were collected 4 to 7 days apart from 34 children participating in the Columbia Center for Children's Environmental Health (CCCEH) birth cohort study. Several field duplicates (sequential collection of two samples in the field) and replicates (one sample pyrosequenced twice) also were collected to ensure consistency with collection and laboratory procedures. DNA methylation was assessed by pyrosequencing a PCR of bisulfite-treated DNA. We found that replicate and field duplicate samples were correlated strongly (r = 0.86 to 0.99, P < 0.05), while repeat samples demonstrated low within-subject correlations (r = 0.19 to 0.56, P = 0.06 to 0.30). Our data reveal DNA methylation as a dynamic epigenetic mechanism that can be accessed safely and reproducibly in an inner city pediatric cohort using non-invasive buccal swabs and pyrosequencing technology.

Download full-text


Available from: Megan Niedzwiecki,
  • Source
    • "DNA methylation is dynamic [17-19]. Though global methylation appears to increase over time [20], studies by both Melvin et al. and White et al. demonstrated that IFNγ T cell methylation appears to decrease in adults compared to neonates [21,22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Asthma is associated with allergic sensitization in about half of all cases, and asthma phenotypes can vary by age and sex. DNA methylation in the promoter of the allergy regulatory gene interferon gamma (IFNγ) has been linked to the maintenance of allergic immune function in human cell and mouse models. We hypothesized that IFNγ promoter methylation at two well-studied, key cytosine phosphate guanine (CpG) sites (-186 and -54), may differ by age, sex, and airway versus systemic tissue in a cohort of 74 allergic asthmatics. Results After sampling buccal cells, a surrogate for airway epithelial cells, and CD4+ lymphocytes, we found that CD4+ lymphocyte methylation was significantly higher in children compared to adults at both CpG sites (P <0.01). Buccal cell methylation was significantly higher in children at CpG -186 (P = 0.03) but not CpG -54 (P = 0.66). Methylation was higher in males compared to females at both CpG sites in CD4+ lymphocytes (-186: P <0.01, -54: P = 0.02) but not buccal cells (-186: P = 0.14, -54: P = 0.60). In addition, methylation was lower in CD4+ lymphocytes compared to buccal cells (P <0.01) and neighboring CpG sites were strongly correlated in CD4+ lymphocytes (r = 0.84, P <0.01) and weakly correlated in buccal cells (r = 0.24, P = 0.04). At CpG -186, there was significant correlation between CD4+ lymphocytes and buccal cells (r = 0.24, P = 0.04) but not at CpG -54 (r = -0.03, P = 0.78). Conclusions These findings highlight significant age, sex, and tissue-related differences in IFNγ promoter methylation that further our understanding of methylation in the allergic asthma pathway and in the application of biomarkers in clinical research.
    Clinical Epigenetics 05/2014; 6(1):9. DOI:10.1186/1868-7083-6-9 · 4.54 Impact Factor
  • Source
    • "Although inter-tissue correlations of region-specific methylation as well as robust interactions between epigenotype and genetic background have been reported for several non-imprinted and imprinted regions including 11p15 [15,40-43,46,47], systematic approaches analyzing larger numbers of tissues and loci strongly endorse the concept that methylation patterns at a variety of regions are commonly influenced by tissue-specific and environmental factors [41,46-50]. Furthermore, DNA samples derived from oral mucosa epithelium may be particularly susceptible to short-term changes and environmental effects [51,52]. We are aware that biological variation resulting from differing cell type composition in saliva samples (mucosa cells and leukocytes) and other biotechnical artifacts related to the saliva sampling method cannot be fully excluded. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and study design: Prenatal growth restriction and low birth weight have been linked to long-term alterations of health, presumably via adaptive modifications of the epigenome. Recent studies indicate a plasticity of the 11p15 epigenotype in response to environmental changes during early stages of human development. We analyzed methylation levels at different 11p15 loci in 20 growth-discordant monozygotic twin pairs. Intrauterine development was discordant due to severe twin-to-twin transfusion syndrome (TTTS), which was treated by fetoscopic laser coagulation of communicating vessels before 25 weeks of gestation. Methylation levels at age 4 were determined in blood and buccal cell-derived DNA by the single nucleotide primer extension reaction ion pair reverse-phase high performance liquid chromatography (SNuPE IP RP HPLC) assay. Methylation at LINE-1 repeats was analyzed as an estimate of global methylation.In general, variance of locus-specific methylation levels appeared to be higher in buccal cell- as compared to blood cell-derived DNA samples. Paired analyses within the twin pairs revealed significant differences at only one CpG site (IGF2 dmr0 SN3 (blood), +1.9% in donors; P = 0.013). When plotting the twin pair-discordance in birth weight against the degree of discordance in site-specific methylation at age 4, only a few CpGs were found to interact (one CpG site each at IGF2dmr0 in blood/saliva DNA, one CpG at LINE-1 repeats in saliva DNA), with 26 to 36% of the intra-twin pair divergence at these sites explained by prenatal growth discordance. However, across the entire cohort of 40 children, site-specific methylation did not correlate with SD-scores for weight or length at birth. Insulin-like growth factor-II serum concentrations showed significant within-twin pair correlations at birth (R = 0.57) and at age 4 (R = 0.79), but did not differ between donors and recipients. They also did not correlate with the analyzed 11p15 methylation parameters. In a cohort of 20 growth-discordant monozygotic twin pairs, severe alteration in placental blood supply due to TTTS appears to leave only weak, if any, epigenetic marks at the analyzed CpG sites at 11p15.
    Clinical Epigenetics 03/2014; 6(1):6. DOI:10.1186/1868-7083-6-6 · 4.54 Impact Factor
  • Source
    • "Another study suggests methylation in beta-2 adrenergic receptor (ADRB2 5 -UTR) as a biomarker of asthma severity and risk for NO 2 exposure [24]. Baccarelli et al. reported increased lower promoter methylation in IL-6 and iNOS genes in nasal cell DNA samples of asthmatic children that fractionally exhaled nitric oxide [25] and Torrone et al. suggest to use buccal cell DNA as a non-invasive method for investigation of methylation in the two asthma genes (interferon ␥ (IFN) and iNOS) [26]. Gene expression profiles in groups of children and adults living in different regions in the Czech Republic were analyzed [27] [28] [29] [30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression levels are significantly regulated by DNA methylation. Differences in gene expression profiles in the populations from various locations with different environmental conditions were repeatedly observed. In this study we compare the methylation profiles in 200 blood samples of children (aged 7-15 years) with and without bronchial asthma from two regions in the Czech Republic with different levels of air pollution (a highly polluted Ostrava region and a control Prachatice region). Samples were collected in March 2010 when the mean concentrations of benzo[a]pyrene (B[a]P) measured by stationary monitoring were 10.1±2.4 ng/m3 in Ostrava Bartovice (5.6 times higher than in the control region). Significantly higher concentrations of other pollutants (benzene, NO2, respirable air particles and metals) were also found in Ostrava. We applied the Infinium Methylation Assay, using the Human Methylation 27K BeadChip with 27,578 CpG loci for identification of the DNA methylation pattern in studied groups. Results demonstrate a significant impact of different environmental conditions on the DNA methylation patterns of children from the two regions. We found 9,916 CpG sites with significantly different methylation (beta value) between children from Ostrava vs. Prachatice from which 58 CpG sites had differences > 10%. The methylation of all these 58 CpG sites was lower in children from polluted Ostrava, which indicates a higher gene expression in comparison with the control Prachatice region. We did not find a difference in DNA methylation patterns between children with and without bronchial asthma in individual locations, but patterns in both asthmatics and healthy children differed between Ostrava and Prachatice. Further, we show differences in DNA methylation pattern depending on gender and urinary cotinine levels. Other factors including length of gestation, birth weight and length of full breastfeeding are suggested as possible factors that can impact the DNA methylation pattern in future life.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 02/2013; 741-742. DOI:10.1016/j.mrfmmm.2013.02.003 · 3.68 Impact Factor
Show more