Reproducibility and intraindividual variation over days in buccal cell DNA methylation of two asthma genes, interferon γ (IFNγ) and inducible nitric oxide synthase (iNOS)

Division of Pulmonary, Allergy and Critical Care of Medicine, PH8E, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA. .
Clinical Epigenetics (Impact Factor: 6.22). 02/2012; 4(1):3. DOI: 10.1186/1868-7083-4-3
Source: PubMed

ABSTRACT The biological mechanisms responsible for the onset and exacerbation of asthma symptoms in children may involve the epigenetic regulation of inflammatory genes after environmental exposures. Using buccal cells, we hypothesized that DNA methylation in promoter regions of two asthma genes, inducible nitric oxide synthase (iNOS) and interferon γ (IFNγ), can vary over several days. Repeat buccal samples were collected 4 to 7 days apart from 34 children participating in the Columbia Center for Children's Environmental Health (CCCEH) birth cohort study. Several field duplicates (sequential collection of two samples in the field) and replicates (one sample pyrosequenced twice) also were collected to ensure consistency with collection and laboratory procedures. DNA methylation was assessed by pyrosequencing a PCR of bisulfite-treated DNA. We found that replicate and field duplicate samples were correlated strongly (r = 0.86 to 0.99, P < 0.05), while repeat samples demonstrated low within-subject correlations (r = 0.19 to 0.56, P = 0.06 to 0.30). Our data reveal DNA methylation as a dynamic epigenetic mechanism that can be accessed safely and reproducibly in an inner city pediatric cohort using non-invasive buccal swabs and pyrosequencing technology.

Download full-text


Available from: Megan Niedzwiecki, Jun 24, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression levels are significantly regulated by DNA methylation. Differences in gene expression profiles in the populations from various locations with different environmental conditions were repeatedly observed. In this study we compare the methylation profiles in 200 blood samples of children (aged 7-15 years) with and without bronchial asthma from two regions in the Czech Republic with different levels of air pollution (a highly polluted Ostrava region and a control Prachatice region). Samples were collected in March 2010 when the mean concentrations of benzo[a]pyrene (B[a]P) measured by stationary monitoring were 10.1±2.4 ng/m3 in Ostrava Bartovice (5.6 times higher than in the control region). Significantly higher concentrations of other pollutants (benzene, NO2, respirable air particles and metals) were also found in Ostrava. We applied the Infinium Methylation Assay, using the Human Methylation 27K BeadChip with 27,578 CpG loci for identification of the DNA methylation pattern in studied groups. Results demonstrate a significant impact of different environmental conditions on the DNA methylation patterns of children from the two regions. We found 9,916 CpG sites with significantly different methylation (beta value) between children from Ostrava vs. Prachatice from which 58 CpG sites had differences > 10%. The methylation of all these 58 CpG sites was lower in children from polluted Ostrava, which indicates a higher gene expression in comparison with the control Prachatice region. We did not find a difference in DNA methylation patterns between children with and without bronchial asthma in individual locations, but patterns in both asthmatics and healthy children differed between Ostrava and Prachatice. Further, we show differences in DNA methylation pattern depending on gender and urinary cotinine levels. Other factors including length of gestation, birth weight and length of full breastfeeding are suggested as possible factors that can impact the DNA methylation pattern in future life.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 02/2013; 741-742. DOI:10.1016/j.mrfmmm.2013.02.003 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic changes in DNA methylation could regulate the expression of several allergy-related genes. We investigated whether tolerance acquisition in children with immunoglobulin E (IgE)-mediated cow's milk allergy (CMA) is characterized by a specific DNA methylation profile of Th2 (IL-4, IL-5) and Th1 (IL-10, IFN-γ)-associated cytokine genes. DNA methylation of CpGs in the promoting regions of genes from peripheral blood mononuclear cells and serum level of IL-4, IL-5, IL-10 and INF-γ were assessed in children with active IgE-mediated CMA (group 1), in children who acquired tolerance to cow's milk proteins (group 2) and in healthy children (group 3). Forty children (24 boys, aged 3 to 18 months) were enrolled: 10 in group 1, 20 in group 2, and 10 in the control group. The DNA methylation profiles clearly separated active CMA patients from healthy controls. We observed an opposite pattern comparing subjects with active IgE-mediated CMA with healthy controls and group 2 children who outgrew CMA. The IL-4 and IL-5 DNA methylation was significantly lower, and IL-10 and INF-γ DNA methylation was higher in active IgE-mediated CMA patients. Gene promoter DNA methylation rates of all cytokines and respective serum levels were strongly correlated. Formula selection significantly influenced cytokine DNA methylation profiles in group 2. Tolerance acquisition in children with IgE-mediated CMA is characterized by a distinct Th1 and Th2 cytokine gene DNA methylation pattern. These results suggest that DNA methylation may be a target for CMA prevention and treatment.
    03/2015; 7(1):38. DOI:10.1186/s13148-015-0070-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Asthma is associated with allergic sensitization in about half of all cases, and asthma phenotypes can vary by age and sex. DNA methylation in the promoter of the allergy regulatory gene interferon gamma (IFNγ) has been linked to the maintenance of allergic immune function in human cell and mouse models. We hypothesized that IFNγ promoter methylation at two well-studied, key cytosine phosphate guanine (CpG) sites (-186 and -54), may differ by age, sex, and airway versus systemic tissue in a cohort of 74 allergic asthmatics. Results After sampling buccal cells, a surrogate for airway epithelial cells, and CD4+ lymphocytes, we found that CD4+ lymphocyte methylation was significantly higher in children compared to adults at both CpG sites (P <0.01). Buccal cell methylation was significantly higher in children at CpG -186 (P = 0.03) but not CpG -54 (P = 0.66). Methylation was higher in males compared to females at both CpG sites in CD4+ lymphocytes (-186: P <0.01, -54: P = 0.02) but not buccal cells (-186: P = 0.14, -54: P = 0.60). In addition, methylation was lower in CD4+ lymphocytes compared to buccal cells (P <0.01) and neighboring CpG sites were strongly correlated in CD4+ lymphocytes (r = 0.84, P <0.01) and weakly correlated in buccal cells (r = 0.24, P = 0.04). At CpG -186, there was significant correlation between CD4+ lymphocytes and buccal cells (r = 0.24, P = 0.04) but not at CpG -54 (r = -0.03, P = 0.78). Conclusions These findings highlight significant age, sex, and tissue-related differences in IFNγ promoter methylation that further our understanding of methylation in the allergic asthma pathway and in the application of biomarkers in clinical research.
    Clinical Epigenetics 05/2014; 6(1):9. DOI:10.1186/1868-7083-6-9 · 6.22 Impact Factor

Similar Publications