Role of diffusion-weighted magnetic resonance imaging in predicting sensitivity to chemoradiotherapy in muscle-invasive bladder cancer.

Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
International journal of radiation oncology, biology, physics (Impact Factor: 4.59). 03/2012; 83(1):e21-7. DOI: 10.1016/j.ijrobp.2011.11.065
Source: PubMed

ABSTRACT In chemoradiation (CRT)-based bladder-sparing approaches for muscle invasive bladder cancer (MIBC), patients who respond favorably to induction CRT enjoy the benefits of bladder preservation, whereas nonresponders do not. Thus, accurate prediction of CRT sensitivity would optimize patient selection for bladder-sparing protocols. Diffusion-weighted MRI (DW-MRI) is a functional imaging technique that quantifies the diffusion of water molecules in a noninvasive manner. We investigated whether DW-MRI predicts CRT sensitivity of MIBC.
The study cohort consisted of 23 MIBC patients (cT2/T3 = 7/16) who underwent induction CRT consisting of radiotherapy to the small pelvis (40 Gy) with two cycles of cisplatin (20 mg/day for 5 days), followed by partial or radical cystectomy. All patients underwent DW-MRI before the initiation of treatment. Associations of apparent diffusion coefficient (ADC) values with CRT sensitivity were analyzed. The proliferative potential of MIBC was also assessed by analyzing the Ki-67 labeling index (LI) in pretherapeutic biopsy specimens.
Thirteen patients (57%) achieved pathologic complete response (pCR) to CRT. These CRT-sensitive MIBCs showed significantly lower ADC values (median, 0.63 × 10(-3) mm(2)/s; range, 0.43-0.77) than CRT-resistant (no pCR) MIBCs (median, 0.84 × 10(-3) mm(2)/s; range, 0.69-1.09; p = 0.0003). Multivariate analysis identified ADC value as the only significant and independent predictor of CRT sensitivity (p < 0.0001; odds ratio per 0.001 ×10(-3) mm(2)/s increase, 1.03; 95% confidence interval, 1.01-1.08). With a cutoff ADC value at 0.74 × 10(-3) mm(2)/s, sensitivity/specificity/accuracy in predicting CRT sensitivity was 92/90/91%. Ki-67 LI was significantly higher in CRT-sensitive MIBCs (p = 0.0005) and significantly and inversely correlated with ADC values (ρ = -0.67, p = 0.0007).
DW-MRI is a potential biomarker for predicting CRT sensitivity in MIBC. DW-MRI may be useful to optimize patient selection for CRT-based bladder-sparing approaches.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To explore associations of whole-lesion histogram diffusion metrics with pathologic findings and subsequent metastatic disease in bladder cancer patients undergoing radical cystectomy.
    Abdominal Imaging 08/2014; · 1.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bladder-sparing strategy for muscle-invasive bladder cancer (MIBC) is increasingly demanded instead of radical cystectomy plus urinary diversion. Multimodal therapeutic approaches consisting of transurethral resection, chemotherapy, radiotherapy and/or partial cystectomy improve patients' quality of life by preserving their native bladder and sexual function without compromising oncological outcomes. Because a favorable response to chemoradiotherapy (CRT) is a prerequisite for successful bladder preservation, predicting and monitoring therapeutic response is an essential part of this approach. Diffusion-weighted magnetic resonance imaging (DW-MRI) is a functional imaging technique increasingly applied to various types of cancers. Contrast in this imaging technique derives from differences in the motion of water molecules among tissues and this information is useful in assessing the biological behavior of cancers. Promising results in predicting and monitoring the response to CRT have been reported in several types of cancers. Recently, growing evidence has emerged showing that DW-MRI can serve as an imaging biomarker in the management of bladder cancer. The qualitative analysis of DW-MRI can be applied to detecting cancerous lesion and monitoring the response to CRT. Furthermore, the potential role of quantitative analysis by evaluating apparent diffusion coefficient values has been shown in characterizing bladder cancer for biological aggressiveness and sensitivity to CRT. DW-MRI is a potentially useful tool for the management of bladder cancer, particularly in multimodal bladder-sparing approaches for MIBC.
    World journal of radiology. 06/2014; 6(6):344-54.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion-weighted magnetic resonance imaging is a type of functional imaging that is increasingly being applied in the management of upper tract urothelial carcinoma and bladder cancer. The image contrast is derived from differences in the Brownian motion of water molecules in tissues. The homogenous high signal intensity of upper tract urothelial carcinoma and bladder cancer on diffusion-weighted magnetic resonance imaging provides helpful diagnostic information for the presence of cancerous lesions in a non-invasive manner. Recently, growing evidence has emerged showing that diffusion-weighted magnetic resonance imaging can serve as an imaging biomarker for characterizing cancer pathophysiology, because the signal reflects biophysical information about the tissues. Quantitative analysis by evaluating the apparent diffusion coefficient values potentially reflects the histological grade and the biological aggressiveness of urothelial carcinoma. The apparent diffusion coefficient value could be a biomarker predicting the clinical course of upper tract urothelial carcinoma and bladder cancer. In addition, in chemoradiotherapy-based bladder-sparing approaches against muscle-invasive bladder cancer, the role of diffusion-weighted magnetic resonance imaging for predicting the chemoradiosensitivity and for monitoring therapeutic response has been shown. Diffusion-weighted magnetic resonance imaging is expected to improve the diagnostic accuracy, and this qualitative information might allow individualized treatment strategies for patients with urothelial carcinoma.
    International Journal of Urology 08/2014; · 1.80 Impact Factor