Article

The Nitric Oxide-Cyclic GMP Pathway Regulates FoxO and Alters Dopaminergic Neuron Survival in Drosophila

Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.
PLoS ONE (Impact Factor: 3.53). 02/2012; 7(2):e30958. DOI: 10.1371/journal.pone.0030958
Source: PubMed

ABSTRACT Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA) neurodegeneration in a Drosophila model of Parkinson's disease (PD), in which a PD gene product LRRK2 activates FoxO through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that cyclic guanosine monophosphate (cGMP)-dependent kinase II (cGKII) also phosphorylates FoxO at the same residue as LRRK2, and Drosophila orthologues of cGKII and LRRK2, DG2/For and dLRRK, respectively, enhance the neurotoxic activity of FoxO in an additive manner. Biochemical assays using mammalian cGKII and FoxO1 reveal that cGKII enhances the transcriptional activity of FoxO1 through phosphorylation of the FoxO1 S319 site in the same manner as LRRK2. A Drosophila FoxO mutant resistant to phosphorylation by DG2 and dLRRK (dFoxO S259A corresponding to human FoxO1 S319A) suppressed the neurotoxicity and improved motor dysfunction caused by co-expression of FoxO and DG2. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) also increased FoxO's activity, whereas the administration of a NOS inhibitor L-NAME suppressed the loss of DA neurons in aged flies co-expressing FoxO and DG2. These results strongly suggest that the NO-FoxO axis contributes to DA neurodegeneration in LRRK2-linked PD.

0 Followers
 · 
141 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) is an important inorganic molecule of the biological system owing to diverse physiological implications. NO is synthesised from a semi-essential amino acid L-arginine. NO biosynthesis is catalysed by a family of enzymes referred to as nitric oxide synthases (NOSs). NO is accused in many acute and chronic illnesses, which include central nervous system disorders, inflammatory diseases, reproductive impairments, cancer and cardiovascular anomalies. Owing to very unstable nature, NO gets converted into nitrite, peroxynitrite and other reactive nitrogen species that could lead to nitrosative stress in the nigrostriatal system. Nitrosative stress is widely implicated in Parkinson's disease (PD), and its beneficial and harmful effects are demonstrated in in vitro, rodent and primate models of toxins-induced parkinsonism and in the blood, cerebrospinal fluid and nigrostriatal tissues of sporadic PD patients. The current article updates the roles of NO and NOSs in sporadic PD and toxins-induced parkinsonism in rodents along with the scrutiny of how inhibitors of NOSs could open a new line of approach to moderately rescue from PD pathogenesis based on the existing literature. The article also provides a perspective concerning the lack of ample admiration to such an approach and how to minimise the underlying lacunae.
    Molecular Neurobiology 07/2013; DOI:10.1007/s12035-013-8517-4 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}Bx(MS1096) genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly's eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing's, but not eye's, morphogenetic organization and architecture. However, Atg9 proved indispensable for the maintenance of structural integrity of adult wings in aged flies. In toto, our findings clearly demonstrate the gene-specific fundamental contribution of proteasome, but not autophagy, in invertebrate eye and wing organ development.
    PLoS ONE 11/2013; 8(11):e80530. DOI:10.1371/journal.pone.0080530 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) is an important regulator of neovascularization. Hypoxia inducible nitric oxide (NO) enhanced the expression of VEGF and thymosin beta-4 (Tβ4), actin sequestering protein. Here, we investigated whether NO-mediated VEGF expression could be regulated by Tβ4 expression in HeLa cervical cancer cells. Hypoxia inducible NO production and VEGF expression were reduced by small interference (si) RNA of Tβ4. Hypoxia response element (HRE)-luciferase activity and VEGF expression were increased by the treatment with N-(β-D-Glucopyranosyl)-N2-acetyl-S-nitroso-D, L-penicillaminamide (SNAP-1), to generate NO, which was inhibited by the inhibition of Tβ4 expression with Tβ4-siRNA. In hypoxic condition, HRE-luciferase activity and VEGF expression were inhibited by the treatment with N(G)-monomethyl-L-arginine (L-NMMA), an inhibitor to nitric oxide synthase (NOS), which is accompanied with a decrease in Tβ4 expression. VEGF expression inhibited by L-NMMA treatment was restored by the transfection with pCMV-Tβ4 plasmids for Tβ4 overexpression. Taken together, these results suggest that Tβ4 could be a regulator for the expression of VEGF via the maintenance of NOS activity.
    Biomolecules and Therapeutics 01/2015; 23(1):19-25. DOI:10.4062/biomolther.2014.101 · 0.84 Impact Factor

Full-text (4 Sources)

Download
33 Downloads
Available from
Jun 1, 2014