Synaptic lability after experience-dependent plasticity is not mediated by calcium-permeable AMPARs

Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh PA, USA.
Frontiers in Molecular Neuroscience (Impact Factor: 4.08). 02/2012; 5:15. DOI: 10.3389/fnmol.2012.00015
Source: PubMed


Activity- or experience-dependent plasticity has been associated with the trafficking of calcium-permeable AMPARs (CP-AMPARs) in a number of experimental systems. In some cases it has been shown that CP-AMPARs are only transiently present and can be removed in an activity-dependent manner. Here we test the hypothesis that the presence of CP-AMPARs confers instability onto recently potentiated synapses. Previously we have shown that altered sensory input (single-whisker experience; SWE) strengthens layer 4-2/3 excitatory synapses in mouse primary somatosensory cortex, in part by the trafficking of CP-AMPARs. Both in vivo and in vitro, this potentiation is labile, and can be depressed by NMDAR-activation. In the present study, the role of CP-AMPARs in conferring this synaptic instability after in vivo potentiation was evaluated. We develop an assay to depress the strength of individual layer 4-2/3 excitatory synapses after SWE, using a strontium (Sr++)-replaced ACSF solution (Sr-depression). This method allows disambiguation of changes in quantal amplitude (a post-synaptic measure) from changes in event frequency (typically a presynaptic phenomenon). Presynaptic stimulation paired with postsynaptic depolarization in Sr++ lead to a rapid and significant reduction in EPSC amplitude with no change in event frequency. Sr-depression at recently potentiated synapses required NMDARs, but could still occur when CP-AMPARs were not present. As a further dissociation between the presence of CP-AMPARs and Sr-depression, CP-AMPARs could be detected in some cells from control, whisker intact animals, although Sr-depression was never observed. Taken together, our findings suggest that CP-AMPARs are neither sufficient nor necessary for experience-dependent synaptic plasticity in somatosensory neocortex.

Download full-text


Available from: Alison L Barth,
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alteration of sensory input can change the strength of neocortical synapses. Selective activation of a subset of whiskers is sufficient to potentiate layer 4-layer 2/3 excitatory synapses in the mouse somatosensory (barrel) cortex, a process that is NMDAR dependent. By analyzing the time course of sensory-induced synaptic change, we have identified three distinct phases for synaptic strengthening in vivo. After an early, NMDAR-dependent phase where selective whisker activation is rapidly translated into increased synaptic strength, we identify a second phase where this potentiation is profoundly reduced by an input-specific, NMDAR-dependent depression. This labile phase is transient, lasting only a few hours, and may require ongoing sensory input for synaptic weakening. Residual synaptic strength is maintained in a third phase, the stabilization phase, which requires mGluR5 signaling. Identification of these three phases will facilitate a molecular dissection of the pathways that regulate synaptic lability and stabilization, and suggest potential approaches to modulate learning.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 05/2013; 33(19):8483-93. DOI:10.1523/JNEUROSCI.3575-12.2013 · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs) to the post-synaptic membrane, and is developmentally regulated. How enhanced sensory experience can alter presynaptic release properties in the developing neocortex has not been investigated. Using paired-pulse stimulation at layer 4-2/3 synapses in acute brain slices, we found that presynaptic release probability progressively increases in the spared-whisker barrel column over the first 24 h of SRE. Enhanced release probability can be at least partly attributed to presynaptic NMDA receptors (NMDARs). We find that the influence of presynaptic NMDARs in enhancing EPSC amplitude markedly increases during SRE. This occurs at the same time when recently potentiated synapses become highly susceptible to a NMDAR-dependent form of synaptic depression, during the labile phase of plasticity. Thus, these data show that augmented sensory stimulation can enhance release probability at layer 4-2/3 synapses and enhance the function of presynaptic NMDARs. Because presynaptic NMDARs have been linked to synaptic depression at layer 4-2/3 synapses, we propose that SRE-dependent up-regulation of presynaptic NMDARs is responsible for enhanced synaptic depression during the labile stage of plasticity.
    Learning & memory (Cold Spring Harbor, N.Y.) 12/2014; 22(1). DOI:10.1101/lm.035741.114 · 3.66 Impact Factor