Article

Cannabinoid receptor genotype moderation of the effects of childhood physical abuse on anhedonia and depression.

Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri 63110, USA.
Archives of general psychiatry (Impact Factor: 13.75). 03/2012; 69(7):732-40. DOI: 10.1001/archgenpsychiatry.2011.2273
Source: PubMed

ABSTRACT The endocannabinoid system has been implicated in stress adaptation and the regulation of mood in rodent studies, but few human association studies have examined these links and replications are limited.
To examine whether a synonymous polymorphism, rs1049353, in exon 4 of the gene encoding the human endocannabinoid receptor (CNR1) moderates the effect of self-reported childhood physical abuse on lifetime anhedonia and depression and to replicate this interaction in an independent sample.
Genetic association study in 1041 young US women with replication in an independent Australian sample of 1428 heroin-dependent individuals as cases and 506 participants as neighborhood controls.
Self-reported anhedonia and depression (with anhedonia).
In both samples, individuals who experienced childhood physical abuse were considerably more likely to report lifetime anhedonia. However, in those with 1 or more copies of the minor allele of rs1049353, this pathogenic effect of childhood physical abuse was attenuated. Thus, in participants reporting childhood physical abuse, although 57.1% of those homozygous for the major allele reported anhedonia, only 28.6% of those who were carriers of the minor allele reported it (P=.01). The rs1049353 polymorphism also buffered the effects of childhood physical abuse on major depressive disorder; however, this influence was largely attributable to anhedonic depression. These effects were also noted in an independent sample, in which minor allele carriers were at decreased risk for anhedonia even when exposed to physical abuse.
Consistent with preclinical findings, a synonymous CNR1 polymorphism, rs1049353, is linked to the effects of stress attributable to childhood physical abuse on anhedonia and anhedonic depression. This polymorphism reportedly resides in the neighborhood of an exon splice enhancer; hence, future studies should carefully examine its effect on expression and conformational variation in CNR1, particularly in relation to stress adaptation.

1 Follower
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite being considered primarily a mood disorder, major depressive disorder (MDD) is characterized by cognitive and decision making deficits. Recent research has employed computational models of reinforcement learning (RL) to address these deficits. The computational approach has the advantage in making explicit predictions about learning and behavior, specifying the process parameters of RL, differentiating between model-free and model-based RL, and the computational model-based functional magnetic resonance imaging and electroencephalography. With these merits there has been an emerging field of computational psychiatry and here we review specific studies that focused on MDD. Considerable evidence suggests that MDD is associated with impaired brain signals of reward prediction error and expected value (‘wanting’), decreased reward sensitivity (‘liking’) and/or learning (be it model-free or model-based), etc., although the causality remains unclear. These parameters may serve as valuable intermediate phenotypes of MDD, linking general clinical symptoms to underlying molecular dysfunctions. We believe future computational research at clinical, systems, and cellular/molecular/genetic levels will propel us towards a better understanding of the disease.
    Neuroscience & Biobehavioral Reviews 05/2015; 55. DOI:10.1016/j.neubiorev.2015.05.005 · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review focuses on current research developments in the study of gene by early life stress (ELS) interactions and depression. ELS refers to aversive experiences during childhood and adolescence such as sexual, physical or emotional abuse, emotional or physical neglect as well as parental loss. Previous research has focused on investigating and characterizing the specific role of ELS within the pathogenesis of depression and linking these findings to neurobiological changes of the brain, especially the stress response system. The latest findings highlight the role of genetic factors that increase vulnerability or, likewise, promote resilience to depression after childhood trauma. Considering intermediate phenotypes has further increased our understanding of the complex relationship between early trauma and depression. Recent findings with regard to epigenetic changes resulting from adverse environmental events during childhood promote current endeavors to identify specific target areas for prevention and treatment schemes regarding the long-term impact of ELS. Taken together, the latest research findings have underscored the essential role of genotypes and epigenetic processes within the development of depression after childhood trauma, thereby building the basis for future research and clinical interventions.
    Frontiers in Endocrinology 02/2014; 5:14. DOI:10.3389/fendo.2014.00014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence over the past decade has highlighted an important role of the endocannabinoid (eCB) system in the regulation of stress and emotional behavior across divergent species, from rodents to humans. The general findings from this work indicate that the eCB system plays an important role in gating and buffering the stress response, dampening anxiety and regulating mood. Work in rodents has allowed researchers to determine the neural mechanisms mediating this relationship while work in human populations has demonstrated the possible importance of this system in stress-related psychiatric diseases, such as post-traumatic stress disorder, generalized anxiety and major depression. These stress-protective effects of eCB signaling appear to be primarily mediated by their actions within corticolimbic structures, particularly the amygdala and the prefrontal cortex. The aim of this review is to provide an up-to-date discussion of the current level of knowledge in this field, as well as address the current gaps in knowledge and specific areas of research that require attention.
    10/2013; 3(1):19. DOI:10.1186/2045-5380-3-19