Cannabinoid receptor genotype moderation of the effects of childhood physical abuse on anhedonia and depression.

Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri 63110, USA.
Archives of general psychiatry (Impact Factor: 13.75). 03/2012; 69(7):732-40. DOI: 10.1001/archgenpsychiatry.2011.2273
Source: PubMed

ABSTRACT The endocannabinoid system has been implicated in stress adaptation and the regulation of mood in rodent studies, but few human association studies have examined these links and replications are limited.
To examine whether a synonymous polymorphism, rs1049353, in exon 4 of the gene encoding the human endocannabinoid receptor (CNR1) moderates the effect of self-reported childhood physical abuse on lifetime anhedonia and depression and to replicate this interaction in an independent sample.
Genetic association study in 1041 young US women with replication in an independent Australian sample of 1428 heroin-dependent individuals as cases and 506 participants as neighborhood controls.
Self-reported anhedonia and depression (with anhedonia).
In both samples, individuals who experienced childhood physical abuse were considerably more likely to report lifetime anhedonia. However, in those with 1 or more copies of the minor allele of rs1049353, this pathogenic effect of childhood physical abuse was attenuated. Thus, in participants reporting childhood physical abuse, although 57.1% of those homozygous for the major allele reported anhedonia, only 28.6% of those who were carriers of the minor allele reported it (P=.01). The rs1049353 polymorphism also buffered the effects of childhood physical abuse on major depressive disorder; however, this influence was largely attributable to anhedonic depression. These effects were also noted in an independent sample, in which minor allele carriers were at decreased risk for anhedonia even when exposed to physical abuse.
Consistent with preclinical findings, a synonymous CNR1 polymorphism, rs1049353, is linked to the effects of stress attributable to childhood physical abuse on anhedonia and anhedonic depression. This polymorphism reportedly resides in the neighborhood of an exon splice enhancer; hence, future studies should carefully examine its effect on expression and conformational variation in CNR1, particularly in relation to stress adaptation.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced endocannabinoid signaling has been implicated in typically adolescent behavioral features such as increased risk-taking, impulsivity and novelty seeking. Research investigating the impact of genetic variants in the cannabinoid receptor 1 gene (CNR1) and of early rearing conditions has demonstrated that both factors contribute to the prediction of impulsivity-related phenotypes. The present study aimed to test the hypothesis of an interaction of the two most studied CNR1 polymorphisms rs806379 and rs1049353 with early psychosocial adversity in terms of affecting impulsivity in 15-year-olds from an epidemiological cohort sample followed since birth. In 323 adolescents (170 girls, 153 boys), problems of impulse control and novelty seeking were assessed using parent-report and self-report, respectively. Exposure to early psychosocial adversity was determined in a parent interview conducted at the age of 3 months. The results indicated that impulsivity increased following exposure to early psychosocial adversity, with this increase being dependent on CNR1 genotype. In contrast, while individuals exposed to early adversity scored higher on novelty seeking, no significant impact of genotype or the interaction thereof was detected. This is the first evidence to suggest that the interaction of CNR1 gene variants with the experience of early life adversity may play a role in determining adolescent impulsive behavior. However, given that the reported findings are obtained in a high-risk community sample, results are restricted in terms of interpretation and generalization. Future research is needed to replicate these findings and to identify the mediating mechanisms underlying this effect.
    Journal of Neural Transmission 07/2014; 122(3). DOI:10.1007/s00702-014-1266-3 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
    Pharmacology [?] Therapeutics 11/2014; 148. DOI:10.1016/j.pharmthera.2014.11.009 · 7.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.
    Seminars in Immunology 10/2014; DOI:10.1016/j.smim.2014.04.001 · 6.12 Impact Factor