A functional variant in FCRL3 is associated with higher Fc receptor-like 3 expression on T cell subsets and rheumatoid arthritis disease activity

University of California, San Francisco, CA 94110, USA.
Arthritis & Rheumatology (Impact Factor: 7.87). 08/2012; 64(8):2451-9. DOI: 10.1002/art.34457
Source: PubMed

ABSTRACT CD4+FoxP3+ Treg cells suppress effector T cells and prevent autoimmune disease. Treg cell function is deficient in active rheumatoid arthritis (RA), a loss which may play a role in the pathogenesis of this disease. We previously showed that a single-nucleotide polymorphism in the FCRL3 gene led to higher expression of Fc receptor-like 3 (FcRL3) on Treg cells and that FcRL3+ Treg cells are functionally deficient in comparison to FcRL3- Treg cells. This study was undertaken to investigate the potential role of FcRL3 in RA.
A cross-sectional study was performed to evaluate the FCRL3 -169 genotype and FcRL3 expression on T cell subsets, including Treg cells, in peripheral blood samples from 51 patients with RA enrolled in the University of California, San Francisco (UCSF) RA Cohort. Clinical data were obtained from the UCSF RA Cohort database.
Patients with the FCRL3 -169C allele (genotype C/C or C/T) expressed higher levels of FcRL3 on Treg cells, and on CD8+ and γ/δ T cells, in comparison to RA patients with the T/T genotype. Higher FcRL3 expression on these T cell subpopulations correlated with RA disease activity in patients harboring the FCRL3 -169C allele. Furthermore, FcRL3 expression on Treg cells was higher in patients with erosive RA, and the FCRL3 -169C allele was overrepresented in patients with erosive RA.
Our findings indicate that FcRL3 expression, which is strongly associated with the presence of the FCRL3 -169C allele, may serve as a biomarker for RA disease activity.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuromyelitis optica (NMO) is an autoimmune disorder. In pathogenesis, NMO-immunoglobulin G (NMO-IgG) selectively binds to aquaporin-4 (AQP4) and resulted in neuritis, myelitis, and brain lesion. Fc receptor-like 3 (FCRL3) gene encodes a member of the immunoglobulin receptor superfamily, which plays an important part in regulating immune activities. This study aimed at investigating the association between FCRL3 polymorphisms and NMO susceptibility and, hopefully, to contribute to the development of novel methods for diagnosis and treatment of NMO. We selected 150 NMO patients and 300 healthy controls from the Chinese population. Tag single nucleotide polymorphisms (SNPs) were identified with reference to CBI-dbSNP and HapMap databases. DNA were extracted and amplified. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to determine the polymorphisms. χ 2, odds ratio (OR), and 95 % confidence interval (95 % CI) were presented to evaluate genotype distribution and association between SNPs and NMO susceptibility. Six out of 15 SNPs were selected according to the filter. No significant altered genotype distribution was observed concerning -11G>C, -166C>T, -219G>C, and -1629C>G polymorphisms. The G allele of -1901A>G variation was demonstrated to be more frequent in patients compared with controls (P T polymorphism was significantly more prevalent in NMO patients than controls (P = 0.009). In summary, the study revealed that the G allele in -1901A>G polymorphism and T allele in -658C>T polymorphism are genetic risk factors for NMO in the Chinese population. Further research is needed to account for different ethnicities and clarify the mechanisms behind, which might contribute to the elucidation of novel diagnosis methods.
    Molecular Neurobiology 01/2015; DOI:10.1007/s12035-014-9036-7 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fc receptors play a central role in maintaining the homeostatic balance in the immune system. Our knowledge of the structure and function of these receptors and their naturally occurring polymorphisms, including single nucleotide polymorphisms and/or copy number variations, continues to expand. Through studies of their impact on human biology and clinical phenotype, the contributions of these variants to the pathogenesis, progression, and/or treatment outcome of many diseases that involve immunoglobulin have become evident. They affect susceptibility to bacterial and viral pathogens, constitute as risk factors for IgG or IgE mediated inflammatory diseases, and impact the development of many autoimmune conditions. In this chapter, we will provide an overview of these genetic variations in classical FcγRs, FcRLs, and other Fc receptors, as well as challenges in achieving an accurate and comprehensive understanding of the FcR polymorphisms and genomic architecture.
    Current topics in microbiology and immunology 01/2014; 382:275-302. DOI:10.1007/978-3-319-07911-0_13 · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Members of the extended Fc receptor-like (FCRL) family in humans and mice are preferentially expressed by B cells and possess tyrosine-based immunoregulatory function. Although the majority of these proteins repress B cell receptor-mediated activation, there is an emerging evidence for their bifunctionality and capacity to counter-regulate adaptive and innate signaling pathways. In light of these findings, the recent discovery of ligands for several of these molecules has begun to reveal exciting potential for them in normal lymphocyte biology and is launching a new phase of FCRL investigation. Importantly, these fundamental developments are also setting the stage for defining their altered roles in the pathogenesis of a growing number of immune-mediated diseases. Here we review recent advances in the FCRL field and highlight the significance of these intriguing receptors in normal and perturbed immunobiology.
    Current topics in microbiology and immunology 01/2014; 382:29-50. DOI:10.1007/978-3-319-07911-0_2 · 3.47 Impact Factor