Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds.

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46656, USA.
Bioorganic & medicinal chemistry (Impact Factor: 2.82). 02/2012; 20(7):2214-20. DOI: 10.1016/j.bmc.2012.02.025
Source: PubMed

ABSTRACT Tuberculosis (TB) is a devastating disease resulting in a death every 20s. Thus, new drugs are urgently needed. Herein we report ten classes of compounds-oxazoline, oxazole, thiazoline, thiazole, pyrazole, pyridine, isoxazole, imidazo[1,2-a]pyridine, imidazo[1,2-a]pyrimidine and imidazo[1,2-c]pyrimidine-which have good (micromolar) to excellent (sub-micromolar) antitubercular potency. The 5,6-fused heteroaromatic compounds were the most potent with MIC's as low as <0.195 μM (9 and 11). Overall, the imidazo[1,2-a]pyridine class was determined to be most promising, with potency similar to isoniazid and PA-824 against replicating Mtb H(37)Rv, clinically relevant drug sensitive, multi- and extensively resistant Mtb strains as well as having good in vitro metabolic stability.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report here on a series of five chemically diverse scaffolds that have activity in vitro on both replicating and hypoxic non-replicating bacilli by targeting the respiratory bc1 complex in Mycobacterium tuberculosis, in a strain-dependent manner. Deletion of the cytochrome bd oxidase generated a hyper-susceptible mutant in which resistance was acquired by mutation in qcrB. These results highlight the promiscuity of the bc1 complex and highlight the risk of targeting energy metabolism with new drugs.
    Antimicrobial Agents and Chemotherapy 08/2014; · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of 24 1-aryl-6-benzyl-7-hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidine-5(1H)-ones was designed as antinociceptive compounds acting through opioid receptors with additional serotoninergic activity. The compounds, similarly as previously published series, lack the protonable nitrogen atom which is a part of classical opioid receptor pharmacophore and is necessary to interact with the conserved Asp(3.32) in the opioid receptor binding pocket. The compounds were obtained in one-step cyclocondensation of 1-aryl-4,5-dihydro-1H-imidazol-2-amines diethyl 2-benzylmalonate or diethyl 2-(2-chlorobenzyl)malonate under basic conditions. Almost all the tested compounds exerted strong antinociceptive activity, but surprisingly, it was not reversed by naloxone; thus, it is not mediated through opioid receptors. It makes it possible to conclude that addition of one more aromatic moiety to the non-classical opioid receptor pharmacophore results in the compounds which are not opioid receptor ligands. The lack of activity of one of the tested compounds may be attributed to low blood-brain barrier permeation or unfavorable distribution of electrostatic potential and HOMO and LUMO orbitals.
    Medicinal Chemistry Research 09/2014; 23(9):4221-4237. · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of noncompliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need to develop novel antitubercular medicines that target new or more effective biochemical pathways to prevent drug resistant Mycobacterium. Integrated study of metabolic pathways through in-silico approach played a key role in antimycobacterial design process in this study. Our results suggest that pantothenate synthetase (PanC), anthranilate phosphoribosyl transferase (TrpD) and 3-isopropylmalate dehydratase (LeuD) might be appropriate drug targets. In the next step, in-silico ligand analysis was used for more detailed study of chemical tractability of targets. This was helpful to identify pantothenate synthetase (PanC, Rv3602c) as the best target for antimycobacterial design procedure. Virtual library screening on the best ligand of PanC was then performed for inhibitory ligand design. At the end, five chemical intermediates showed significant inhibition of Mycobacterium bovis with good selectivity indices (SI) ≥10 according to Tuberculosis Antimicrobial Acquisition & Coordinating Facility of US criteria for antimycobacterial screening programs.
    Iranian journal of pharmaceutical research (IJPR) 01/2015; 14(1):203-14. · 0.51 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014