Article

FcγRIIB: a modulator of cell activation and humoral tolerance.

Institute of Genetics, Department of Biology, University of Erlangen Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
Expert Review of Clinical Immunology (Impact Factor: 2.89). 03/2012; 8(3):243-54. DOI: 10.1586/eci.12.5
Source: PubMed

ABSTRACT An immune response needs to be tightly regulated to prevent excessive inflammation, which may result in the destruction of healthy tissues. At the molecular level, the strength of an immune response is determined by the integration of a multitude of positive and negative signals. This review will focus on IgG-dependent immune responses and discuss how the inhibitory receptor FcγRIIB may be involved in regulating both the afferent and efferent phases of such a response. Furthermore, we will discuss recent evidence suggesting that FcγRIIB may have important functions beyond the negative regulation of signals transduced by the B-cell receptor or activating FcγRs and could be responsible for the activity of agonistic antibodies in vivo.

0 Bookmarks
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intravenous immunoglobulin (IVIG) preparations comprise pooled IgG antibodies from the serum of thousands of donors and were initially used as an IgG replacement therapy in immunocompromised patients. Since the discovery, more than 30 years ago, that IVIG therapy can ameliorate immune thrombocytopenia, the use of IVIG preparations has been extended to a wide range of autoimmune and inflammatory diseases. Despite the broad efficacy of IVIG therapy, its modes of action remain unclear. In this Review, we cover the recent insights into the molecular and cellular pathways that are involved in IVIG-mediated immunosuppression, with a particular focus on IVIG as a therapy for IgG-dependent autoimmune diseases.
    Nature Reviews Immunology 03/2013; 13(3):176-89. · 32.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune recognition of non-self is coordinated through complex mechanisms involving both innate and adaptive responses. Circulating antibodies communicate with effector cells of the innate immune system through surface receptors known as Fc gamma receptors (FcγRs). The FcγRs are single pass transmembrane glycoproteins responsible for regulating innate effector responses toward antigenic material. Although IgG antibodies bind to a range of receptors including complement receptors and C-type lectins we have focused on the Fcγ receptors. A total of five functional FcγRs are broadly classified into three families (FcγRI, FcγRII, and FcγRIII) and together aid in controlling both inflammatory and anti-inflammatory responses of the innate immune system. Due to the continued success of monoclonal antibodies in treating cancer and autoimmune disorders, research is typically directed towards improving the interaction of antibodies with the FcγRs through manipulation of IgG properties such as N-linked glycosylation. Biochemical studies using recombinant forms of the FcγRs are often used to quantitate changes in binding affinity, a key indicator of a likely biological outcome. However, analysis of the FcγRs themselves is imperative as recombinant FcγRs differ greatly from those observed in humans. In particular, the N-linked glycan composition is significantly important due to its function in the IgG-FcγR interaction. Here, we present data for the N-linked glycans present on FcγRs produced in NS0 cells. Importantly, these FcγRs demonstrate typical murine glycosylation in the form of α-galactose epitopes, N-glycolylneuraminic acid, and other key glycan properties that are generally expressed in murine cell lines and therefore are not typically observed in humans.
    Journal of Proteome Research 06/2013; · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Engagement of Fcγ receptor IIb (FcγRIIb) suppresses B cell activation and represents a promising target for therapy in autoimmunity. The aim of this study was to characterize B cell immunosuppression mediated by the Fc-engineered antibody, XmAb5871, which coengages FcγRIIb with the B cell antigen receptor (BCR) complex and that is currently in clinical development for the treatment of rheumatoid arthritis (RA). Because rheumatoid factor (RF) might interfere with the binding of XmAb5871 to FcγRIIb, we correlated RF titers with the potency of XmAb5871. We analyzed the expression of CD19, FcγRIIb, and CD86 on naive and memory B cells from 50 patients with RA and 66 healthy donors, quantified XmAb5871-induced promotion of FcγRIIb phosphorylation and suppression of calcium flux in activated B cells, measured CD86 inhibition in whole blood, and correlated RF and anti-citrullinated protein antibody (ACPA) levels with drug potency. We engrafted RA peripheral blood mononuclear cells (PBMCs) into SCID mice, treated them with XmAb5871, and quantified human total IgG, total IgM, and anti-tetanus IgG antibody levels in vivo. B cells from all donors expressed CD19 and FcγRIIb, and the expression of FcγRIIb was higher on naive, but not memory, B cells from donors with RA compared with healthy donors. BCR-mediated calcium flux was suppressed by XmAb5871 and was associated with FcγRIIb phosphorylation. XmAb5871 inhibited CD86 induction, and the levels of RF and ACPAs did not affect efficacy. XmAb5871 suppressed B cell activation regardless of disease severity. In SCID mice engrafted with PBMCs from a patient with RA, XmAb5871 suppressed humoral responses. Coengagement of the BCR complex and FcγRIIb by XmAb5871 inhibits B cell activation and function. The similar potency in patients with RA and healthy donors and the absence of autoantibody interference suggest that XmAb5871 may represent a new therapeutic strategy to suppress autoreactive B cells in RA.
    Arthritis & rheumatology (Hoboken, N.J.). 05/2014; 66(5):1153-1164.