Article

Triggering Fbw7-mediated proteasomal degradation of c-Myc by oridonin induces cell growth inhibition and apoptosis.

Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
Molecular Cancer Therapeutics (Impact Factor: 5.6). 03/2012; 11(5):1155-65. DOI:10.1158/1535-7163.MCT-12-0066
Source: PubMed

ABSTRACT The transcription factor c-Myc is important in cell fate decisions and is frequently overexpressed in cancer cells, making it an attractive therapeutic target. Natural compounds are among the current strategies aimed at targeting c-Myc, but their modes of action still need to be characterized. To explore the mechanisms underlying the anticancer activity of a natural diterpenoid, oridonin, we conducted miRNA expression profiling and statistical analyses that strongly suggested that c-Myc was a potential molecular target of oridonin. Furthermore, experimental data showed that oridonin significantly reduced c-Myc protein levels in vitro and in vivo and that this reduction was mediated by the ubiquitin-proteasome system. Fbw7, a component of the ubiquitin-proteasome system and an E3 ubiquitin ligase of c-Myc, was upregulated rapidly in K562 cells and other leukemia and lymphoma cells, resulting in the rapid turnover of c-Myc. In cell lines harboring mutations in the WD domain of Fbw7, the degradation of c-Myc induced by oridonin was attenuated during short-term treatment. GSK-3, an Fbw7 priming kinase, was also activated by oridonin, along with an increase in T58-phosphorylated c-Myc. Furthermore, the knockdown of Fbw7 or the forced expression of stable c-Myc resulted in reduced sensitization to oridonin-induced apoptosis. Our observations help to clarify the anticancer mechanisms of oridonin and shed light on the application of this natural compound as an Fbw7-c-Myc pathway targeting agent in cancer treatment.

0 0
 · 
0 Bookmarks
 · 
64 Views
  • [show abstract] [hide abstract]
    ABSTRACT: cyclin D3 (CCND3) is one of the three D-type cyclins that regulate the G1/S phase transition of the cell cycle. Expression of CCND3 is observed in nearly all proliferating cells; however, the presence of high levels of CCND3 has been linked to a poor prognosis for several types of cancer. Therefore, further mechanistic studies on the regulation of CCND3 expression are urgently needed to provide therapeutic implications. In this study, we report that a conserved RNA G-quadruplex-forming sequence (hereafter CRQ), located in the 5' UTR of mammalian CCND3 mRNA, is able to fold into an extremely stable, intramolecular, parallel G-quadruplex in vitro. The CRQ G-quadruplex dramatically reduces the activity of a reporter gene in human cell lines, but it has little impact on its mRNA level, indicating a translational repression. Moreover, the CRQ sequence in its natural context inhibits translation of CCND3. Disruption of the G-quadruplex structure by G/U-mutation or deletion results in an elevated expression of CCND3 and an increased phosphorylation of Rb, a downstream target of CCND3, which promotes progression of cells through the G1 phase. Our results add to the growing understanding of the regulation of CCND3 expression and provide a potential therapeutic target for cancer treatment.
    RNA biology 08/2012; 9(8). · 5.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Icaritin, a hydrolytic product of icaritin, is isolated from the traditional Chinese medicinal herb epimedium. Icaritin inhibits the proliferation of several tumor cell lines, but its effect on acute myeloid leukemia (AML) and underlying mechanisms remain to be identified. In the present study, we demonstrated that icaritin inhibits the proliferation of human AML cell lines NB4, HL60, and U937, in a dose- and time-dependent manner. Importantly, icaritin showed anti-leukemia activity on bone marrow mononuclear cells from 15 newly diagnosed AML patients. Flow cytometry analyses indicated that icaritin induces AML cells apoptosis. Icaritin induced activation of caspase-9, -3, -7 and the cleavage of PARP as measured by Western blotting. Icaritin downregulates p-ERK and p-AKT and inhibits the expression of c-myc. These results suggest that icaritin is a promising candidate drug for the treatment of AML. The underlying mechanisms of icaritin anti-AML activity are associated with inhibition of the MAPK/ERK and PI3K/AKT signals and downregulation of c-myc.
    International journal of hematology 04/2013; · 1.17 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Oridonin, an active diterpenoid isolated from traditional Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis- and autophagy-inducing activity and relevant molecular mechanisms in cancer therapy. Apoptosis is a well known type of cell death, whereas autophagy can play either pro-survival or pro-death roles in cancer cells. Accumulating evidence has recently revealed relationships between apoptosis and autophagy induced by oridonin; however, molecular mechanisms behind them remain to be discovered. In this review, we focus on highlighting updated research on oridonin-induced cell death signalling pathways implicated in apoptosis and autophagy, in many types of cancer. In addition, we further discuss cross-talk between apoptosis and autophagy induced by oridonin, in cancer. Taken together, these findings open new perspectives for further exploring oridonin as a potential anti-tumour agent targeting apoptosis and autophagy, in future anti-cancer therapeutics.
    Cell Proliferation 12/2012; 45(6):499-507. · 2.27 Impact Factor

Hui-Lin Huang