Visualization by mass spectrometry of 2-dimensional changes in rat brain lipids, including N-acylphosphatidylethanolamines, during neonatal brain ischemia

Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Denmark.
The FASEB Journal (Impact Factor: 5.04). 03/2012; 26(6):2667-73. DOI: 10.1096/fj.11-201152
Source: PubMed


Spatial synthesis of N-acyl-phosphatidylethanolamines (NAPEs) and N-acylethanolamines (NAEs) during ischemia-reperfusion in neonatal rats has been investigated and compared to the spatial degradation of other phospholipids. Ischemia was induced in anesthetized Wistar P7 rat pups by left middle cerebral artery electrocoagulation combined with a transient and concomitant occlusion of both common carotid arteries. Pups were sacrificed after 24 and 48 h. Sham-treated animals were sacrificed after 48 h. The frozen brains were sliced and subjected to desorption electrospray ionization imaging mass spectrometry. There was a remarkable increase in the levels of many species of NAPEs in the whole injured area at both time points, and a clear but minor increase in selected NAEs. In the ischemic area, the sodium adducts of phosphatidylcholine and of lyso-phosphatidylcholine accumulated and the potassium adduct of phosphatidylcholine disappeared, indicating breakdown of the Na(+)/K(+) pump. Free fatty acids, e.g., arachidonic and docosahexaenoic acids, tended to be more abundant in the periphery than in the center of the ischemic area and showed different spatial distribution. NAPEs are synthesized in the whole ischemic area where the cells seem to be dead and other phospholipids are degraded. Free fatty acids can be found in the periphery of the ischemic area.

14 Reads
  • Source
    • "DESI imaging has become an attractive tool for visualizing spatial location of various chemical components, e.g. lipids [9] [10] [11], metabolites and drug substrates in animal and human tissues [12] [13]. From the aspect of plant materials, direct non-imaging DESI analysis secondary metabolites has been published [14] [15] [16], whereas direct DESI imaging has only been presented on seaweed [17] and stripped epidermis of barley leaves [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Two different approaches to direct imaging of plant material with desorption electrospray ionization (DESI) mass spectrometry are presented and demonstrated on leaves and petals of Hypericum perforatum. The direct imaging approaches are in contrast to previous DESI imaging studies where indirect analysis via imprints were used in order to overcome the morphological barrier presented by the layer of cuticular waxes covering the surface of a leaf or a petal. In order to enable direct imaging of such plant materials, a new ternary solvent system is introduced, providing a higher and more stable signal from soft plant materials than the binary solvent systems typically used in DESI. With this ternary solvent system, it was possible to image a number of very long chain fatty acids (VLCFAs), a significant class of metabolites located in the cuticle layer in leaves and petals, as well as other plant metabolites. In the case of the petals of H. perforatum, all common metabolites could be imaged directly using the ternary solvent, whereas in the case of leaves from the same plant, only some of the metabolites were accessible, even with the ternary solvent system. For these samples, the leaves could be imaged with direct DESI after chloroform had been used to remove most of the cuticle, thus exposing lower layers in the leaf structure. A number of considerations regarding selection of samples and instrumental parameters that must be made in direct DESI imaging of plant materials are discussed. (C) 2013 Elsevier B.V. All rights reserved.
    International Journal of Mass Spectrometry 08/2013; 348:15-22. DOI:10.1016/j.ijms.2013.04.018 · 1.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Easy ambient sonic spray ionization (EASI) and desorption electrospray ionization (DESI) were used for imaging of a number of samples, including sections of rat brain and imprints of plant material on porous Teflon. A novel approach termed Displaced Dual-mode Imaging was utilized for the direct comparison of the two methods: Images were recorded with the individual rows alternating between EASI and DESI, yielding a separate image for each technique recorded under perfectly similar conditions on the same sample. EASI works reliably for imaging of all samples, but the choice of spray solvent and flow rate is more critical in tissue imaging with EASI than with DESI. The overall sensitivity of EASI is, in general, slightly lower than that of DESI, and the representation of the dynamic range is different in images of the two techniques for some samples. However, for abundant compounds, EASI works well, resulting in images of similar quality as DESI. EASI can thus be used in imaging experiments where the application of high voltage is impractical or undesirable. The present study is in its nature also a comparison of the characteristics of the two techniques, showing results also applicable for non-imaging work, with regards to sensitivity and experimental conditions.
    Journal of the American Society for Mass Spectrometry 08/2012; 23(10):1670-8. DOI:10.1007/s13361-012-0452-5 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endocannabinoids are endogenous ligands of the cannabinoid receptors CB1 and CB2. Two arachidonic acid derivatives, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, are considered to be physiologically important endocannabinoids. In the known metabolic pathway in mammals, anandamide and other bioactive N-acylethanolamines, such as palmitoylethanolamide and oleoylethanolamide, are biosynthesized from glycerophospholipids by a combination of Ca(2+) -dependent N-acyltransferase and N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D, and are degraded by fatty acid amide hydrolase. However, recent studies have shown the involvement of other enzymes and pathways, which include the members of the tumor suppressor HRASLS family (the phospholipase A/acyltransferase family) functioning as Ca(2+) -independent N-acyltransferases, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipaseD-independent multistep pathways via N-acylated lysophospholipid, and N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme that preferentially hydrolyzes palmitoylethanolamide. Although their physiological significance is poorly understood, these new enzymes/pathways may serve as novel targets for the development of therapeutic drugs. For example, selective N-acylethanolamine-hydrolyzing acid amidase inhibitors are expected to be new anti-inflammatory and analgesic drugs. In this minireview, we focus on advances in the understanding of these enzymes/pathways. In addition, recent findings on 2-arachidonoylglycerol metabolism are described.
    FEBS Journal 01/2013; 280(9). DOI:10.1111/febs.12152 · 4.00 Impact Factor
Show more