N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Journal of Cell Science (Impact Factor: 5.33). 02/2012; 125(Pt 3):724-34. DOI: 10.1242/jcs.092726
Source: PubMed

ABSTRACT Invadopodia are proteolytic membrane protrusions formed by highly invasive cancer cells, commonly observed on substrate(s) mimicking extracellular matrix. Although invadopodia are proposed to have roles in cancer invasion and metastasis, direct evidence has not been available. We previously reported that neural Wiskott-Aldrich syndrome protein (N-WASP), a member of WASP family proteins that regulate reorganization of the actin cytoskeleton, is an essential component of invadopodia. Here, we report that N-WASP-mediated invadopodium formation is essential in breast cancer invasion, intravasation and lung metastasis. We established stable cell lines based on MTLn3 rat mammary adenocarcinoma cells that either overexpressed a dominant-negative (DN) N-WASP construct or in which N-WASP expression was silenced by a pSuper N-WASP shRNA. Both the N-WASP shRNA and DN N-WASP cells showed a markedly decreased ability to form invadopodia and degrade extracellular matrix. In addition, formation of invadopodia in primary tumors and collagen I degradation were reduced in the areas of invasion (collagen-rich areas in the invasive edge of the tumor) and in the areas of intravasation (blood-vessel-rich areas). Our results suggest that tumor cells in vivo that have a decreased activity of N-WASP also have a reduced ability to form invadopodia, migrate, invade, intravasate and disseminate to lung compared with tumor cells with parental N-WASP levels.

Download full-text


Available from: Bojana Gligorijevic, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The leading cause of death in cancer patients is metastasis. Invasion is an integral part of metastasis and is carried out by proteolytic structures called invadopodia at the cellular level. In this introductory review, we start by evaluating the definition of invadopodia. While presenting the upstream signaling events involved, we integrate current models on invadopodia. In addition, we discuss the significance of invadopodia in 2D and 3D and in vivo. We finally point out technical challenges and conclude with open questions in the field.
    Turkish Journal of Biology 11/2014; 38(6):740-747. DOI:10.3906/biy-1404-110 · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unconventional secretion of exosome vesicles from multivesicular endosomes (MVEs) occurs across a broad set of systems and is reported to be upregulated in cancer, where it promotes aggressive behavior. However, regulatory control of exosome secretion is poorly understood. Using cancer cells, we identified specialized invasive actin structures called invadopodia as specific and critical docking and secretion sites for CD63- and Rab27a-positive MVEs. Thus, inhibition of invadopodia formation greatly reduced exosome secretion into conditioned media. Functionally, addition of purified exosomes or inhibition of exosome biogenesis or secretion greatly affected multiple invadopodia life cycle steps, including invadopodia formation, stabilization, and exocytosis of proteinases, indicating a key role for exosome cargoes in promoting invasive activity and providing in situ signaling feedback. Exosome secretion also controlled cellular invasion through three-dimensional matrix. These data identify a synergistic interaction between invadopodia biogenesis and exosome secretion and reveal a fundamental role for exosomes in promoting cancer cell invasiveness.
    Cell Reports 11/2013; 5(5). DOI:10.1016/j.celrep.2013.10.050 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasizing tumor cells use matrix metalloproteases, such as the transmembrane collagenase MT1-MMP, together with actin-based protrusions, to break through extracellular matrix barriers and migrate in dense matrix. Here we show that the actin nucleation–promoting protein N-WASP (Neural Wiskott-Aldrich syndrome protein) is up-regulated in breast cancer, and has a pivotal role in mediating the assembly of elongated pseudopodia that are instrumental in matrix degradation. Although a role for N-WASP in invadopodia was known, we now show how N-WASP regulates invasive protrusion in 3D matrices. In actively invading cells, N-WASP promoted trafficking of MT1-MMP into invasive pseudopodia, primarily from late endosomes, from which it was delivered to the plasma membrane. Upon MT1-MMP’s arrival at the plasma membrane in pseudopodia, N-WASP stabilized MT1-MMP via direct tethering of its cytoplasmic tail to F-actin. Thus, N-WASP is crucial for extension of invasive pseudopods into which MT1-MMP traffics and for providing the correct cytoskeletal framework to couple matrix remodeling with protrusive invasion.
    The Journal of Cell Biology 10/2012; 199(3):527-544. DOI:10.1083/jcb.201203025 · 9.69 Impact Factor