Excitation Spectra and Brightness Optimization of Two-Photon Excited Probes

Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.
Biophysical Journal (Impact Factor: 3.97). 02/2012; 102(4):934-44. DOI: 10.1016/j.bpj.2011.12.056
Source: PubMed


Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced--resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation.

Download full-text


Available from: Petra Schwille, Sep 22, 2014
  • Source
    • "Finally, the new genetically encoded glutamate sensor, iGluSnFR, shows fast kinetics (Marvin et al., 2013) and is potentially suitable for fast real-time recording of glutamate release from astrocytes. Combining it with TIRFM detection of single vesicle exocytosis would help to clarify the relative contribution of vesicular vs. non-vesicular release pathways to glutamate release (Kimelberg et al., 2006; Li et al., 2012; Woo et al., 2012). Fourth, a combination of fast two-photon imaging , local photoactivation and genetically targeted expression of pHluorins in slice and in vivo must validate earlier findings from cell-culture studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca(2+))-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) astrocytes and neurons express an overlapping repertoire of transmembrane receptors; (iii) the size of astrocyte processes in contact with synapses are below the resolution of confocal and two-photon microscopes (iv) bulk-loading techniques using fluorescent Ca(2+) indicators lack cellular specificity. In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca(2+) indicators (GECIs), light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: (i) the complexity of astrocyte Ca(2+) signaling revealed by GECIs; (ii) new pharmacogenetic and optogenetic approaches to activate specific Ca(2+) signaling pathways in astrocytes; (iii) classical and new techniques to monitor vesicle fusion in cultured astrocytes; (iv) possible strategies to express specifically reporter genes in astrocytes.
    Frontiers in Cellular Neuroscience 10/2013; 7:193. DOI:10.3389/fncel.2013.00193 · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 μM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.
    Journal of the American Chemical Society 07/2012; 134(36):14923-31. DOI:10.1021/ja304018d · 12.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2012; 32(40):13819-13840. DOI:10.1523/JNEUROSCI.2601-12.2012 · 6.34 Impact Factor
Show more