Clinical significance of SOX9 in human non-small cell lung cancer progression and overall patient survival

Department of Biochemistry and Molecular Biology, School of medicine, ShenZhen University, Shen Zhen, China.
Journal of Experimental & Clinical Cancer Research (Impact Factor: 3.27). 03/2012; 31(1):18. DOI: 10.1186/1756-9966-31-18
Source: PubMed

ABSTRACT Sex determining region Y (SRY)-related high mobility groupbox 9 (SOX9) is an important transcription factor required for development, which regulates the expression of target genes in the associated pathway. The aim of this study was to describe the expression of SOX9 in human non-small cell lung cancer (NSCLC) and to investigate the association between SOX9 expression and progression of NSCLC.
SOX9 protein and mRNA expression in normal human pneumonocytes, lung cancer cell lines, and eight pairs of matched lung cancer tissues and their adjacent normal lung tissues were detected by Western blotting and real-time reverse transcription-polymerase chain reaction (RT-PCR). Immunohistochemistry was used to determine SOX9 protein expression in 142 cases of histologically characterized NSCLC. Statistical analyses were applied to test for prognostic and diagnostic associations.
SOX9 in lung cancer cell lines was upregulated at both mRNA and protein levels, and SOX9 mRNA and protein were also elevated in NSCLC tissues compared with levels in corresponding adjacent non-cancerous lung tissues. Immunohistochemical analysis demonstrated a high expression of SOX9 in 74/142 (52.1%) paraffin-embedded archival lung cancer biopsies. Statistical analysis indicated that upregulation of SOX9 was significantly correlated with the histological stage of NSCLC (P=0.017) and that patients with a high SOX9 level exhibited a shorter survival time (P<0.001). Multivariate analysis illustrated that SOX9 upregulation might be an independent prognostic indicator for the survival of patients with NSCLC.
This work shows that SOX9 may serve as a novel and prognostic marker for NSCLC, and play a role during the development and progression of the disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-small lung cell carcinoma (NSCLC) is a leading lethal disease and a global health burden. The function of the Sex determining region Y (SRY)-related high mobility group box (SOX) family gene in cancer has attracted the attention of more and more scientists recently, yet there are few reports regarding the role of SOX in NSCLC. Our study aimed to investigate the expression of SOX8, a protein belonging to the E group of the SOX family, as well as SOX9, in non-small cell lung cancer (NSCLC) and the relationship of gene expression to clinicopathological factors and prognosis in patients. Immunohistochemical analysis was used to measure the expression of SOX8 in 80 NSCLC and 7 adjacent normal tissues. SOX8 expression was detected as elevated in tumor samples and correlated to tumor size (P < 0.001), lymph node metastasis (P = 0.001), differentiation classification (P = 0.015), and clinical stage (P = 0.013) significantly. Moreover, Kaplan-Meier survival analysis demonstrated that shorter survival time for patients who had higher SOX8 expression (P < 0.001). In addition, our experiments indicate that miRNA-124 functions as a tumor suppressor in NSCLC. We also demonstrate miRNA-124 directly targeted and decreased SOX8 in NSCLC cell lines, suggesting smiRNA-124 may regulate NSCLC cell proliferation via decreasing SOX8 (oncogenicity of biomarker in NSCLC).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell type-specific conditional activation of oncogenic K-Ras is a powerful tool for investigating the cell of origin of adenocarcinomas in the mouse lung. Our previous studies showed that K-Ras activation with a CC10(Scgb1a1)-CreER driver leads to adenocarcinoma in a subset of alveolar type II cells and hyperplasia in the bronchioalveolar duct region. However, no tumors develop in the bronchioles, although recombination occurs throughout this region. To explore underlying mechanisms, we simultaneously modulated either Notch signaling or Sox2 levels in the CC10(+) cells along with activation of K-Ras. Inhibition of Notch strongly inhibits adenocarcinoma formation but promotes squamous hyperplasia in the alveoli. In contrast, activation of Notch leads to widespread Sox2(+), Sox9(+), and CC10(+) papillary adenocarcinomas throughout the bronchioles. Chromatin immunoprecipitation demonstrates Sox2 binding to NOTCH1 and NOTCH2 regulatory regions. In transgenic mouse models, overexpression of Sox2 leads to a significant reduction of Notch1 and Notch2 transcripts, while a 50% reduction in Sox2 leads to widespread papillary adenocarcinoma in the bronchioles. Taken together, our data demonstrate that the cell of origin of K-Ras-induced tumors in the lung depends on levels of Sox2 expression affecting Notch signaling. In addition, the subtype of tumors arising from type II cells is determined in part by Notch activation or suppression.
    Genes & Development 09/2014; 28(17):1929-39. DOI:10.1101/gad.243717.114 · 12.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We develop circular exponential amplification reaction (EXPAR)-based surface-enhanced Raman spectroscopy (SERS) for simultaneous sensitive detection of multiple microRNAs in non-small cell lung cancer cells. This method possesses distinct advantages of excellent selectivity and high sensitivity with a detection limit of as low as 0.5 fM, which has improved by as much as 6 orders of magnitude as compared with the previously reported SERS-based direct assay.
    Chemical Communications 08/2014; 50(80). DOI:10.1039/c4cc05598e · 6.72 Impact Factor

Preview (2 Sources)

1 Download
Available from