Effect of Phosphodiesterase 7 (PDE7) Inhibitors in Experimental Autoimmune Encephalomyelitis Mice. Discovery of a New Chemically Diverse Family of Compounds

Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
Journal of Medicinal Chemistry (Impact Factor: 5.48). 03/2012; 55(7):3274-84. DOI: 10.1021/jm201720d
Source: PubMed

ABSTRACT Phosphodiesterase (PDE) 7 is involved in proinflammatory processes, being widely expressed both on lymphocytes and on certain brain regions. Specific inhibitors of PDE7 have been recently reported as potential new drugs for the treatment of neurological disorders because of their ability to increase intracellular levels of cAMP and thus to modulate the inflammatory process, as a neuroprotective well-established strategy. Multiple sclerosis is an unmet disease in which pathologies on the immune system, T-cells, and specific neural cells are involved simultaneously. Therefore, PDE7 inhibitors able to interfere with all these targets may represent an innovative therapy for this pathology. Here, we report a new chemically diverse family of heterocyclic PDE7 inhibitors, discovered and optimized by using molecular modeling studies, able to increase cAMP levels in cells, decrease inflammatory activation on primary neural cultures, and also attenuate the clinical symptoms in the experimental autoimmune encephalomyelitis (EAE) mouse model. These results led us to propose the use of PDE7 inhibitors as innovative therapeutic agents for the treatment of multiple sclerosis.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic neuroinflammation has been increasingly recognized as a primary mechanism underlying acute brain injury and neurodegenerative diseases. Enhanced expression of diverse pro-inflammatory agents in glial cells has been shown to contribute to the cell death that takes place in these disorders. Previous data from our group have shown that different inhibitors of the cyclic adenosine monophosphate (cAMP) specific phosphodiesterase 7 (PDE7) and glycogen synthase kinase-3 (GSK-3) enzymes are potent anti-inflammatory agents in different models of brain injury. In this study, we investigated cross-talk between PDE7 and GSK-3, two relevant therapeutic targets for neurological disorders, using a chemical approach. To this end, we compared specific inhibitors of GSK-3 and PDE7 with dual inhibitors of both enzymes with regard to anti-inflammatory effects in primary cultures of glial cells treated with lipopolysaccharide. Our results show that the GSK-3 inhibitors act exclusively by inhibition of this enzyme. By contrast, PDE7 inhibitors exert their effects via inhibition of PDE7 to increase intracellular cAMP levels but also through indirect inhibition of GSK-3. Activation of protein kinase A by cAMP results in phosphorylation of Ser9 of GSK-3 and subsequent inhibition. Our results indicate that the indirect inhibition of GSK-3 by PDE7 inhibitors is an important mechanism that should be considered in the future development of pharmacological treatments.
    ACS Chemical Neuroscience 01/2014; 5(3). DOI:10.1021/cn400166d · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the cellular and molecular processes involved in learning and memory will help in the development of safe and effective cognitive enhancers. The cAMP response element-binding (CREB) may be a universal modulator of processes required for memory formation, and increasing the levels of second messengers like cAMP and cGMP could ultimately lead to CREB activation. Phosphodiesterase (PDE) inhibitors regulate signaling pathways by elevating cAMP and/or cGMP levels, and they have been demonstrated to improve learning and memory in a number of rodent models of impaired cognition. The aim of this review is to summarize the outstanding progress that has been made in the application of PDE inhibitors for memory dysfunction. In addition, we have introduced some recent data we generated demonstrating that tadalafil could be considered as an optimal candidate for drug re-positioning and as a good candidate to enhance cognition.
    Journal of Alzheimer's disease: JAD 08/2014; 42. DOI:10.3233/JAD-141341 · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A forward chemical genetic approach was followed to discover new targets and lead compounds for Parkinson's disease (PD) treatment. By analysis of the cell protection produced by some small molecules, a diphenyl sulfide compound was revealed to be a new phosphodiesterase 7 (PDE7) inhibitor and identified as a new hit. This result allows us to confirm the utility of PDE7 inhibitors as a potential pharmacological treatment of PD. Based on these data, a diverse family of diphenyl sulfides has been developed and pharmacologically evaluated in the present work. Moreover, to gain insight into the safety of PDE7 inhibitors for human chronic treatment, we evaluated the new compounds in a surrogate emesis model, showing non-emetic effects.
    Journal of Medicinal Chemistry 09/2014; 57(20). DOI:10.1021/jm501090m · 5.48 Impact Factor


Available from
Jun 6, 2014